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1977: DRAM faster than microprocessors
Apple ][ (1977)

Steve 
WozniakSteve 

Jobs

CPU: 1000 ns
DRAM: 400 ns
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CPU vs. Memory Performance Trends
Relative performance (vs. 1980 perf.) as a function of year

+7%/year

+55%/year

+35%/year

Performance gap between processor and memory…
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Why?
• Because of a fundamental constraint:

– The larger the memory, 
the higher the access latency.

– A characteristic of all present memory technologies.
• This will remain true in all future technologies!

– Quantum mechanics gives a minimum size for bits
• (Assuming energy density is limited.)

– Thus n bits require Ω(n) volume of space.
– At light speed, random access takes Ω(n1/3) time!

• (Assuming a roughly flat region of space time.)
• Of course, specific memory technologies (or a suite of 

available technologies) may scale even worse than this!

Ω(n1/3)

(Beyond
some point.)
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What Programmers Want
• Programmers like to be insulated from physics

– It’s easier to think about programming models if you 
don’t have to worry about physical constraints.

– However, ignoring physics in algorithm design always 
sacrifices some runtime efficiency. 

– But, programmer productivity is more important  
economically than performance (for now).

• Programmers want to pretend they have the 
following memory model:
– An unlimited number of memory locations,

all accessible instantly!
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What We Can Provide?
• A small number of memory locations, all 

accessible quickly; and/or
• A large number of memory locations, all 

accessible more slowly; and/or
• A memory hierarchy,

– Has both kinds of memory (& maybe others)
– Can automatically transfer data between them

• often (hopefully) before it’s needed
– Approximates (gives the illusion of having):

• As many locations as the large memory has,
• All accessible almost as quickly as the small memory!



Since 1980, CPU has outpaced DRAM ...

CPU
60% per yr
2X in 1.5 yrs

DRAM
9% per yr
2X in 10 yrs

10

DRAM

CPU

Performance
(1/latency)

100

1000

19
80

20
00

19
90

Year

Gap grew 50% per 
year

Q. How do architects address this gap? 
A. Put smaller, faster “cache” memories 

between CPU and DRAM. 
Create a “memory hierarchy”.
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Big & Fast: How is that possible?
• Illusion of big & fast is enabled by pre-fetching

of data from remote locations (before needed).
• How can simple, dumb hardware figure out what 

remote data to automatically fetch, before we 
need it?

• Basis for this: Principle of Locality
– When a location is accessed, it and “nearby” locations 

are likely to be accessed again soon.
• “Temporal” locality - Same location likely again soon.
• “Spatial” locality - Nearby locations likely soon.

• This only works if the programmer cooperates!
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Simple Hierarchy Example
• Note many orders of magnitude change in 

characteristics between levels:

×128→ ×8192→ ×200→

×4 → ×100 → ×50,000 →(for random access)
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Cache Basics
• A cache is a (usually automatically managed) 

store that is intermediate in size, speed, 
and cost-per-bit between the programmer-
visible registers (usually SRAM) and main 
physical memory (usually DRAM).

• The cache itself may be SRAM or fast 
DRAM.

• There may be >1 levels of caches; for now 
we’ll focus on a single level.



Levels of the Memory Hierarchy

CPU Registers
100s Bytes
<10s ns

Cache
K Bytes
10-100 ns
1-0.1 cents/bit

Main Memory
M Bytes
200ns- 500ns
$.0001-.00001 cents /bit
Disk
G Bytes, 10 ms 
(10,000,000 ns)

10   - 10  cents/bit-5 -6

Capacity
Access Time
Cost

Tape
infinite
sec-min
10 -8

Registers

Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
8-128 bytes

OS
512-4K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger
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Programmer Control, or Not?
• Even if the programmer isn’t afraid of the 

physics, hierarchies are still useful.  Why?
– The lower (larger, slower) levels are cheaper per bit.
– Generalized Amdahl’s Law demands we include memory 

at different cost levels in our design.
• But: Automatic movement between hierarchy 

levels can’t always give you the best algorithm!
• The ideal memory hierarchy would…

– Allow (but not require) programmer control of data 
movement at all levels.

• the ambitious & skilled programmer could then better 
optimize how the hardware is used.
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Memory Scaling Isn’t Everything

• The goal of memory hierarchy:
– Scale available memory to arbitrarily large sizes
– without a big impact on access time.

• But should scaling memory PER CPU really be the 
goal in systems design?  No!

• Consider: 
– The cost/size/power of a sufficiently large memory, 

network file server, or tape archive system can easily
far exceed that of a CPU.

• A balanced system design should also scale the 
number of CPUs with the amount of memory!
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Memory Architectures
• As your problem size increases, here’s what 

you should do, as a systems engineer:
– Add memory to your CPU (at the appropriate 

hierarchy level for best overall performance/cost )
• Up until the size/cost/power/latency due to memory 

access starts to dominate.
– Then, rather than keep throwing more hierarchy 

onto that one poor CPU,
• Add another CPU to the system, and build another 

memory hierarchy around it.
• CPUs can be networked



One Scalable Architecture

CPU

Local memory hierarchy
(optimal fixed size)

Processing Node

CPU

Local memory hierarchy
(optimal fixed size)

Processing Node

CPU

Local memory hierarchy
(optimal fixed size)

Processing Node

CPU

Local memory hierarchy
(optimal fixed size)

Processing Node

CPU

Local memory hierarchy
(optimal fixed size)

Processing Node

CPU

Local memory hierarchy
(optimal fixed size)

Processing Node

Interconnection 
network
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Advantages
• Mirrors the architecture of physics
• Every item in memory has a CPU relatively nearby 

that can process it.
• To manipulate some remote data in a certain way, 

the code to do the manipulation can be moved to 
the data, rather than vice-versa.
– This can be much cheaper, as data sizes grow!

• Every item in memory can still be accessed, if 
needed, by any CPU, via sharing
– Through interconnection-network, message-passing.
– Memory accessible by a CPU still scales arbitrarily.



CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-17

Outline
• Review
• Cache 
• Cache Performance
• 6 Basic Cache Optimization
• Virtual Memory
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The Principle of Locality
• The Principle of Locality:

– Program access a relatively small portion of the address 
space at any instant of time.

• Two Different Types of Locality:
– Temporal Locality (Locality in Time): If an item is referenced, 

it will tend to be referenced again soon (e.g., loops, reuse)
– Spatial Locality (Locality in Space): If an item is referenced, 

items whose addresses are close by tend to be referenced 
soon 
(e.g., straightline code, array access)

• Last 15 years, HW relied on locality for speed

It is a property of programs which is exploited in machine design.



Memory Hierarchy: Terminology
• Hit: data appears in some block in the upper level (example: 

Block X) 
– Hit Rate: the fraction of memory access found in the upper level
– Hit Time: Time to access the upper level which consists of

RAM access time + Time to determine hit/miss
• Miss: data needs to be retrieve from a block in the lower level 

(Block Y)
– Miss Rate = 1 - (Hit Rate)
– Miss Penalty: Time to replace a block in the upper level  + 

Time to deliver the block the processor
• Hit Time << Miss Penalty (500 instructions on 21264!)

Lower Level
MemoryUpper Level

Memory
To Processor

From Processor
Blk X

Blk Y
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Cache Measures
• Hit rate: fraction found in that level

– So high that usually talk about Miss rate
– Miss rate fallacy: as MIPS to CPU performance, 

miss rate to average memory access time in memory 
• Average memory-access time 

= Hit time + Miss rate x Miss penalty (ns or clocks)
• Miss penalty: time to replace a block from lower level, 

including time to replace in CPU
– access time: time to lower level 

= f(latency to lower level)
– transfer time: time to transfer block 

=f(BW between upper & lower levels)
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missmisshitacc TfTT ++=

Cache Performance Formulas
(Average memory access time) = 
(Hit time) + (Miss rate)×(Miss penalty)
• The times Tacc, Thit, and T+miss can be all either:

– Real time (e.g., nanoseconds)
– Or, number of clock cycles

• In contexts where cycle time is known to be a constant

• Important:
– T+miss means the extra (not total) time for a miss

• in addition to Thit, which is incurred by all accesses

CPU Cache
Lower levels
of hierarchy

Hit time

Miss penalty
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Four Questions for Memory Hierarchy
• Consider any level in a memory hierarchy.

– Remember a block is the unit of data transfer.
• Between the given level, and the levels below it

• The level design is described by four behaviors:
– Block Placement:

• Where could a new block be placed in the level?
– Block Identification:

• How is a block found if it is in the level?
– Block Replacement:

• Which existing block should be replaced if necessary?
– Write Strategy:

• How are writes to the block handled?



CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-23

Direct-Mapped Placement
• A block can only go into one frame in the cache

– Determined by block’s address (in memory space)
• Frame number usually given by some low-order bits of block 

address.

• This can also be expressed as:
(Frame number) = 

(Block address) mod (Number of frames in cache)
• Note that in a direct-mapped cache, 

– block placement & replacement are both completely 
determined by the address of the new block that is to 
be accessed.
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Direct-Mapped Identification
Tags Block frames

Address

Decode & Row Select

?Compare Tags

Hit

Tag Frm# Off.

Data Word

Mux
select
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Fully-Associative Placement
• One alternative to direct-mapped is…

– Allow block to fill any empty frame in the cache.
• How do we then locate the block later?

– Can associate each stored block with a tag
• Identifies the block’s home address.

– When the block is needed, we can use the cache as an 
associative memory, using the tag to match all frames in 
parallel, to pull out the appropriate block.

• Another alternative to direct-mapped is 
placement under full program control.
– A register file can be viewed as a small programmer-

controlled cache (w. 1-word blocks).
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Fully-Associative Identification
Block addrs Block frames

Address

Parallel Compare
& Select

Block addr Off.

Data Word

Mux
select

Note that, compared to Direct:

• More address bits have to be 
stored with each block frame.

• A comparator is needed for each
frame, to do the parallel 
associative lookup.

Hit
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Set-Associative Placement
• The block address determines not a single frame, 

but a frame set (several frames, grouped 
together).  
– (Frame set #) = (Block address) mod (# of frame sets)

• The block can be placed associatively anywhere 
within that frame set.

• If there are n frames in each frame set, the 
scheme is called “n-way set-associative”.

• Direct mapped = 1-way set-associative.  
• Fully associative: There is only 1 frame set.
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Set-Associative Identification
Tags Block frames

Address

Hit

Tag Set# Off.

Data Word

Mux
select

Block address

Set Select

Parallel Compare

• Intermediate between direct-
mapped and fully-associative in 
number of tag bits needed to be 
associated with cache frames.

• Still need a comparator for each 
frame (but only those in one set 
need be activated).

Note:
4 separate

sets



Q1: Where can a block be placed in 
the upper level? 

• Block 12 placed in 8 block cache:
– Fully associative, direct mapped, 2-way set 

associative
– S.A. Mapping = Block Number Modulo Number Sets

Cache

01234567 0123456701234567

Memory

1111111111222222222233
01234567890123456789012345678901

Full Mapped Direct Mapped
(12 mod 8) = 4

2-Way Assoc
(12 mod 4) = 0
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Cache Size Equation
• Simple equation for the size of a cache:

(Cache size) = (Block size) × (Number of sets)
× (Set Associativity)

• Can relate to the size of various address fields:
(Block size) = 2(# of offset bits)

(Number of sets) = 2(# of index bits)

(# of tag bits) = (# of memory address bits) 
− (# of index bits) − (# of offset bits)

Memory address
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Q2: How is a block found if 
it is in the upper level?

• Tag on each block
– No need to check index or block offset

• Increasing associativity shrinks index, expands 
tag

Block
Offset

Block Address

IndexTag
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Q3: Replacement Strategies
• Which existing block do we replace, when a new 

block comes in?
• Direct-mapped:

– There’s only one choice!
• Associative (fully- or set-):

– If any frame in the set is empty, pick one of those.
– Otherwise, there are many possible strategies:

• (Pseudo-) random
– Simple, fast, and fairly effective

• Least-recently used (LRU), and approximations 
thereof

– Makes little difference in larger caches
• First in, first out (FIFO)

– Use time since block was read
– May be easier to track than time since last access
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Write Strategies
• Most accesses are reads, not writes

– Especially if instruction reads are included
• Writes are more difficult

– Can’t write to cache till we know the right block
– Object written may have various sizes (1-8 bytes)

• When to synchronize cache with memory?
– Write through - Write to cache & to memory

• Prone to stalls due to high bandwidth requirements
– Write back - Write to memory upon replacement

• Memory may be out of date



Q4: What happens on a write?
Write-Through Write-Back

Policy

Data written to cache 
block

also written to lower-
level memory

Write data only to 
the cache

Update lower level 
when a block falls 
out of the cache

Debug Easy Hard

Do read misses 
produce writes? No Yes

Do repeated 
writes make it 
to lower level?

Yes No
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Write Miss Strategies
• What do we do on a write to a block that’s 

not in the cache?
• Two main strategies:

– Write-allocate (fetch on write) - Cache the 
block.

– No write-allocate (write around) - Just write 
to memory.

• Write-back caches tend to use write-
allocate.

• White-through tends to use no write-
allocate.



CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-36

Dirty Bits
• Useful in write-back strategies to 

minimize memory bandwidth
• When a cache block is modified, it is 

marked as “dirty” (no longer a 
pristine copy of memory)

• When a block is replaced, it only 
needs to be written back to memory 
if it is dirty
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Another Write Strategy
• Maintain a FIFO queue of all dirty cache frames 

(e.g. can use a doubly-linked list)
– When a block is written to, put it at the end of the 

queue, if it’s not already dirty
– When a dirty block is evicted, remove it from the queue, 

and write it immediately
• Meanwhile, take items from top of queue and 

write them to memory as fast as bus can handle
– Reads might take priority, or have a separate bus

• Advantages: Write stalls are minimized, while 
keeping memory as up-to-date as possible
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Write Buffers
• A mechanism to help reduce write stalls
• On a write to memory, block address and 

data to be written are placed in a write 
buffer.

• CPU can continue immediately
– Unless the write buffer is full.

• Write merging:
– If the same block is written again before it has 

been flushed to memory, old contents are 
replaced with new contents.



Write Merging Example



Write Buffers for Write-Through Caches

Q. Why a write buffer ? 

Processor
Cache

Write Buffer

Lower 
Level 

Memory

Holds data awaiting write-through to 
lower level memory

A. So CPU doesn’t stall 

Q. Why a buffer, why not just 
one register ?

A. Bursts of writes are
common.

Q. Are Read After Write 
(RAW) hazards an issue for 
write buffer?

A. Yes!  Drain buffer before next 
read, or send read 1st after check 
write buffers.
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Outline
• Review
• Cache
• Cache Performance
• 6 Basic Cache Optimization
• Virtual Memory
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Cache Performance Review
• From chapter 1:

– (Memory stall cycles) = 
(Instruction count) ×
(Accesses per instruction) × (Miss rate) ×
(Miss penalty)

• A better metric:
– (Average memory access time) = 

(Hit time) + (Miss rate) × (Miss penalty)
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More Cache Performance Metrics
• Can split access time into instructions & data:

Avg. mem. acc. time =
(% instruction accesses) × (inst. mem. access time) +    
(% data accesses) × (data mem. access time)

• Another formula from chapter 1:
CPU time = (CPU execution clock cycles + Memory stall 

clock cycles) × cycle time
– Useful for exploring ISA changes

• Can break stalls into reads and writes:
Memory stall cycles = 

(Reads × read miss rate × read miss penalty) +       
(Writes × write miss rate × write miss penalty)

Hit time + miss rate × miss penalty =
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Factoring out Instruction Count
• Gives (lumping together reads & writes):

• May replace:

– So that miss rates aren’t affected by 
redundant accesses to same location within an 
instruction.

⎟
⎠
⎞

⎜
⎝
⎛ ××+

××=

penaltyMissrateMiss
Inst

AccessesCPI

timecycleClockICtimeCPU

exec

ninstructio
MissesrateMiss

ninstructio
Accesses

→×
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Improving Cache Performance
• Reducing cache miss Penalty
• Reducing miss rate 
• Reducing hit time

• Note that by Amdahl’s Law, there will be 
diminishing returns from reducing only hit 
time or amortized miss penalty by itself, 
instead of both together
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Three Types of Misses
• Compulsory

– During a program, the very first access to a block will 
not be in the cache (unless pre-fetched)

• Capacity
– The working set of blocks accessed by the program is 

too large to fit in the cache

• Conflict
– Unless cache is fully associative, sometimes blocks may 

be evicted too early (compared to fully-associative) 
because too many frequently-accessed blocks map to the 
same limited set of frames.
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Miss Statistics
• See Fig. C.8 (too large to fit legibly on 

slide)
• Note:

– Conflict misses are a significant fraction of 
total misses in a direct-mapped cache.

– Going from direct-mapped to 2-way helps 
almost as much as doubling cache size.

– Going from direct-mapped to 4-way is better
than doubling cache size.
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Misses by Type
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As fraction of total misses
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Outline
• Review
• Cache 
• Cache Performance
• 6 Basic Cache Optimization
• Virtual Memory
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6 Basic Cache Optimizations
• Reducing Miss Rate
1. Larger Block size (compulsory misses)
2. Larger Cache size (capacity misses)
3. Higher Associativity (conflict misses)

• Reducing Miss Penalty
4. Multilevel Caches
5. Giving Reads Priority over Writes 

• Reducing hit time
6. Avoiding Address Translation during Indexing of the 

Cache 
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1. Larger Block Sizes
• Larger block size no. of blocks ↓
• Obvious advantages: reduce compulsory misses

– Reason is due to spatial locality
• Obvious disadvantage

– Higher miss penalty: larger block takes longer to move
– May increase conflict misses and capacity miss if cache 

is small

Don’t let increase in miss penalty outweigh the decrease in miss rate
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Miss Rate vs. Block Size

Larger block may increase conflict and capacity miss
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Actual Miss Rate vs. Block Size



CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-55

Miss Rate VS. Miss Penalty
• Assume memory system takes 80 CC of overhead 

and then deliver 16 bytes every 2 CC. And the   
Hit time = 1 CC

• Miss penalty
– Block size 16 = 80 + 2 = 82
– Block size 32 = 80 + 2 * 2 = 84
– Block size 256 = 80 + 16 * 2 = 112

• AMAT = hit_time + miss_rate*miss_penalty
– 16-byte in a 4 KB cache = 1 + 8.57% * 82 = 8.027 CC
– 256-byte in a 256 KB cache = 1 + 0.49% * 112 = 1.549 CC
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AMAT VS. Block Size for 
Different-Size Caches
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2. Large Caches
• Cache size↑ miss rate↓; hit time↑
• Help with both conflict and capacity 

misses
• May need longer hit time AND/OR 

higher HW cost
• Popular in off-chip caches
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3. Higher Associativity
• (Fig. C.8, C.9) 

– 8-way set associative is for practical purposes as 
effective in reducing misses as fully associative

• 2: 1 Cache rule of thumb
– Miss rate: 2 way set associative of size N/ 2 is about 

the same as a direct mapped cache of size N (held for 
cache size < 128 KB)

• Greater associativity comes at the cost of 
increased hit time
– Lengthen the clock cycle
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4. Multi-Level Caches
• Probably the best miss-penalty reduction
• Performance measurement for 2-level 

caches
– Average memory access time (AMAT) =       

Hit-time-L1 + Miss-rate-L1× Miss-penalty-L1
– Miss-penalty-L1 = Hit-time-L2 + Miss-rate-L2 ×

Miss-penalty-L2
– AMAT = Hit-time-L1 + Miss-rate-L1 ×

(Hit-time-L2 + Miss-rate-L2 × Miss-penalty-L2)



CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-60

Multi-Level Caches (Cont.)
• Definitions:

– Local miss rate: misses in this cache divided by the total 
number of memory accesses to this cache (Miss-rate-L2)

– Global miss rate: misses in this cache divided by the 
total number of memory accesses generated by CPU 
(Miss-rate-L1 x Miss-rate-L2) 

– Global Miss Rate is what matters
• Advantages:

– Capacity misses in L1 end up with a significant penalty 
reduction since they likely will get supplied from L2

• No need to go to main memory
– Conflict misses in L1 similarly will get supplied by L2
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Effect of 2-level Caching
• Holding size of 1st level cache constant:

– Decreases miss penalty of 1st-level cache.
– Or, increases average global hit time a bit:

• hit time-L1 + miss rate-L1 x hit time-L2
– but decreases global miss rate

• Holding total cache size constant:
– Global miss rate, miss penalty about the same
– Decreases average global hit time significantly!

• New L1 much smaller than old L1
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Miss Rate Example
• Suppose that in 1000 memory references there are 40 misses in 

the first-level cache and 20 misses in the second-level cache
– Miss rate for the first-level cache = 40/1000 (4%)
– Local miss rate for the second-level cache = 20/40 (50%)
– Global miss rate for the second-level cache = 20/1000 (2%)

• Assume miss-penalty-L2 is 200 CC, hit-time-L2 is 10 CC, hit-time-
L1 is 1 CC, and 1.5 memory reference per instruction. What is 
average memory access time and average stall cycles per 
instructions? Ignore writes impact.
– AMAT = Hit-time-L1 + Miss-rate-L1 × (Hit-time-L2 + Miss-rate-L2×

Miss-penalty-L2) = 1 + 4% × (10 + 50% × 200) = 5.4 CC
– Average memory stalls per instruction = Misses-per-instruction-L1 ×

Hit-time-L2 + Misses-per-instructions-L2×Miss-penalty-L2
= (40×1.5/1000) × 10 + (20×1.5/1000) ×200 = 6.6 CC

– Or (5.4 – 1.0) × 1.5 = 6.6 CC
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Comparing Local and Global Miss Rates

32KB L1 cache

More assumptions are shown in the legend of Figure C.14
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Relative Execution Time by 
L2-Cache Size

Cache size is
what matters

Reference execution time
of 1.0 is for 8192KB L2
cache with 1 CC latency
on a L2 hit
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Comparing Local and Global Miss Rates
• Huge 2nd level caches
• Global miss rate close to single level cache rate 

provided L2 >> L1
• Global cache miss rate should be used when 

evaluating second-level caches (or 3rd, 4th,… levels 
of hierarchy)

• Many fewer hits than L1, target reduce misses
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Example: Impact of L2 
Cache Associativity

• Hit-time-L2 
– Direct mapped = 10 CC; 
– 2-way set associativity = 10.1 CC (usually round up to 

integral number of CC, 10 or 11 CC)
• Local-miss-rate-L2

– Direct mapped = 25%; 
– 2-way set associativity = 20%

• Miss-penalty-L2 = 200CC
• Impact of Miss-penalty-L2

– Direct mapped = 10 + 25% * 200 = 60 CC
– 2-way (10 CC) = 10 + 20% * 200 = 50 CC
– 2-way (11 CC) = 11 + 20% * 200 = 51 CC



CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-67

5: Critical Word First and 
Early Restart

• Do not wait for full block to be loaded before restarting CPU
– Critical Word First – request the missed word first from memory 

and send it to the CPU as soon as it arrives; let the CPU continue 
execution while filling the rest of the words in the block. Also
called wrapped fetch and requested word  first

– Early restart -- as soon as the requested word of the block 
arrives, send it to the CPU and let the CPU continue execution

• Benefits of critical word first and early restart depend on
– Block size: generally useful only in large blocks
– Likelihood of another access to the portion of the block that has 

not yet been fetched
• Spatial locality problem: tend to want next sequential word, so not 

clear if benefit

CPU normally needs one word 
of the block at a time
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5. Giving Priority to Read 
Misses Over Writes

• In write through, write buffers complicate memory access 
in that they might hold the updated value of location 
needed on a read miss
– RAW conflicts with main memory reads on cache misses

• Read miss waits until the write buffer empty increase 
read miss penalty 

• Check write buffer contents before read, and if no 
conflicts, let the memory access continue

• Write Back?
– Read miss replacing dirty block
– Normal: Write dirty block to memory, and then do the read
– Instead, copy the dirty block to a write buffer, then do the 

read, and then do the write
– CPU stall less since restarts as soon as do read

SW R3, 512(R0) ;cache index 0
LW R1, 1024(R0) ;cache index 0
LW R2, 512(R0) ;cache index 0

R2=R3 ?

read priority over write
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6. Avoiding Address Translation 
during Indexing of the Cache

• Using virtual address for cache
– index
– tag comparison

virtual cache (eliminate address translation times)

Address 
Translation

Physical
Address Cache

Indexing

Virtual
Address

Virtual Cache
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Virtually Addressed Caches

CPU

TLB

$

MEM

VA

PA

PA

Conventional
Organization

CPU

$

TLB

MEM

VA

VA

PA

Virtually Addressed Cache
Translate only on miss

Synonym (Alias) Problem

VA
Tags

$ means cache

CPU

$ TLB

MEM

VA

VA
Tags

PA
L2 $

Overlap $ access with VA 
translation: requires $ 

index to remain invariant
across translation
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Virtual Addressed Caches
• Parallel rather than sequential access

– Physical addressed caches access the TLB to generate 
the physical address, then do the cache access

• Avoid address translation during cache index
– Implies virtual addressed cache
– Address translation proceeds in parallel with cache 

index
• If translation indicates that the page is not mapped - then 

the result of the index is not a hit
• Or if a protection violation occurs - then an exception 

results
• All is well when neither happen

• Too good to be true?
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Why not Virtual Cache?
• Protection – necessary part of the virtual to 

physical address translation
– Copy protection information on a miss, add a field to 

hold it, and check it on every access to virtually 
addressed cache.

• Task switch causes the same virtual address to 
refer to different physical address
– Hence cache must be flushed

• Creating huge task switch overhead
• Also creates huge compulsory miss rates for new process 

– Use PID’s as part of the tag to aid discrimination
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Miss Rate of Virtual Caches
PIDs increases Uniprocess – 0.3% to 0.5%
PIDs saves 0.6% to 4.3% over purging
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Why not Virtual Cache? (Cont.)
• Synonyms or Alias

– OS and User code have different virtual addresses 
which map to the same physical address (facilitates 
copy-free sharing)

– Two copies of the same data in a virtual cache 
consistency issue

– Anti-aliasing (HW) mechanisms guarantee single copy
• On a miss, check to make sure none match PA of the data 

being fetched  (must VA PA); otherwise, invalidate
– SW can help - e.g. SUN’s version of UNIX

• Page coloring - aliases must have same low-order 18 bits
• I/O – use PA

– Require mapping to VA to interact with a virtual cache
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Outline
• Review
• Cache 
• Cache Performance
• 6 Basic Cache Optimization
• Virtual Memory



The Limits of Physical Addressing

CPU Memory
A0-A31 A0-A31

D0-D31 D0-D31

“Physical addresses” of memory locations 

Data

All programs share one address space: 
The physical address space

No way to prevent a program from accessing 
any machine resource

Machine language programs must be
aware of the machine organization 
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Virtual Memory
• Recall: Many processes use only a small part of address 

space.
• Virtual memory divides physical memory into blocks (called 

page or segment) and allocates them to different processes
• With virtual memory, the CPU produces virtual addresses

that are translated by a combination of HW and SW to 
physical addresses, which accesses main memory. The 
process is called memory mapping or address translation

• Today, the two memory-hierarchy levels controlled by 
virtual memory are DRAMs and magnetic disks
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Virtual Memory (Cont.)
• Permits applications to grow bigger than main memory size
• Helps with multiple process management

– Each process gets its own chunk of memory
– Permits protection of 1 process’ chunks from another
– Mapping of multiple chunks onto shared physical memory
– Mapping also facilitates relocation (a program can run in any 

memory location, and can be moved during execution)
– Application and CPU run in virtual space (logical memory, 0 –

max)
– Mapping onto physical space is invisible to the application

• Cache vs. VM
– Block becomes a page or segment
– Miss becomes a page or address fault



Solution:  Add a Layer of Indirection

CPU Memory

A0-A31 A0-A31

D0-D31 D0-D31

Data

User programs run in an standardized
virtual address space

Address Translation hardware 
managed by the operating system (OS)

maps virtual address to physical memory

“Physical 
Addresses”

Address
Translation

Virtual Physical

“Virtual Addresses”

Hardware supports “modern” OS features:
Protection, Translation, Sharing



Three Advantages of Virtual Memory
• Translation:

– Program can be given consistent view of memory, even though 
physical memory is scrambled

– Makes multithreading reasonable (now used a lot!)
– Only the most important part of program (“Working Set”) must be 

in physical memory.
– Contiguous structures (like stacks) use only as much physical 

memory as necessary yet still grow later.
• Protection:

– Different threads (or processes) protected from each other.
– Different pages can be given special behavior

• (Read Only, Invisible to user programs, etc).
– Kernel data protected from User programs
– Very important for protection from malicious programs

• Sharing:
– Can map same physical page to multiple users

(“Shared memory”)
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Virtual Memory

Mapping by a
page table

4 pages
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Typical Page Parameters



Page Tables Encode Virtual Address Spaces

A machine 
usually supports

pages of a few 
sizes

(MIPS R4000):

Physical
Memory Space

A valid page table entry codes physical 
memory “frame” address for the page

A virtual address space
is divided into blocks

of memory called pages
frame

frame

frame

frame

A page table is indexed by a 
virtual address

virtual 
address

Page Table

OS 
manages 
the page 
table for 
each ASID



Physical
Memory Space

• Page table maps virtual page numbers to physical 
frames (“PTE” = Page Table Entry)

• Virtual memory => treat memory ≈ cache for disk

Details of Page Table
Virtual Address

Page Table

index
into
page
table

Page Table
Base Reg

V Access
Rights PA

V page no. offset
12

table located
in physical
memory

P page no. offset
12

Physical Address

frame

frame

frame

frame

virtual 
address

Page Table
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Example 

11    0113

2 * 4 + 1 = 9 Physical space = 25

Logical space = 24

Page size = 22

PT Size = 24/22= 22

Each PT entry needs 5-2 bits

010    019
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Cache vs. VM Differences
• Replacement

– Cache miss handled by hardware
– Page fault usually handled by OS

• Addresses
– VM space is determined by the address size of the CPU
– Cache space is independent of the CPU address size

• Lower level memory
– For caches - the main memory is not shared by 

something else
– For VM - most of the disk contains the file system

• File system addressed differently - usually in I/ O space
• VM lower level is usually called SWAP space
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2 VM Styles - Paged or Segmented?

• Virtual systems can be categorized into two classes: pages (fixed-
size blocks), and segments (variable-size blocks) 

SegmentPage

Not always (small segments 
may transfer just a few bytes)

Yes (adjust page size to 
balance access time and 
transfer time)

Efficient disk traffic

External fragmentation (unused 
pieces of main memory)

Internal fragmentation 
(unused portion of page)

Memory use 
inefficiency

Hard (must find contiguous, 
variable-size, unused portion of 
main memory)

Trivial (all blocks are the 
same size)

Replacing a block

May be visible to application 
programmer

Invisible to application 
programmer

Programmer visible?
Two (segment and offset)OneWords per address 
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Virtual Memory – The Same 4 Questions
• Block Placement

– Choice: lower miss rates and complex placement or vice 
versa

• Miss penalty is huge, so choose low miss rate place 
anywhere

• Similar to fully associative cache model

• Block Identification - both use additional data 
structure
– Fixed size pages - use a page table
– Variable sized segments - segment table

frame number frame offset
f    (l-n) d  (n)
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The Same 4 Questions for VM
• Block Replacement -- LRU is the best

– However true LRU is a bit complex – so use 
approximation

• Page table contains a use tag, and on access the use tag is 
set

• OS checks them every so often - records what it sees in a 
data structure - then clears them all

• On a miss the OS decides who has been used the least and 
replace that one

• Write Strategy -- always write back
– Due to the access time to the disk, write through is silly
– Use a dirty bit to only write back pages that have been 

modified
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Techniques for Fast Address Translation

• Page table is kept in main memory (kernel memory)
– Each process has a page table

• Every data/instruction access requires two 
memory accesses
– One for the page table and one for the data/instruction
– Can be solved by the use of a special fast-lookup 

hardware cache called associative registers or 
translation look-aside buffers (TLBs)

• If locality applies then cache the recent 
translation
– TLB = translation look-aside buffer
– TLB entry: virtual page no, physical page no, protection 

bit, use bit, dirty bit



MIPS Address Translation
“Physical 

Addresses”

CPU Memory
A0-A31 A0-A31

D0-D31 D0-D31

Data

TLB also contains
protection bits for virtual address

Virtual Physical

“Virtual Addresses”

Fast common case: Virtual address is in TLB, 
process has permission to read/write it.  

What is 
the table 

of
mappings 

that it 
caches?

Translation
Look-Aside

Buffer
(TLB)

Translation Look-Aside Buffer (TLB)
A small fully-associative cache of 

mappings from virtual to physical addresses
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TLB
• The TLB must be on chip; otherwise 

it is worthless
– Fully associative – parallel search

• Typical TLB’s
– Hit time - 1 cycle
– Miss penalty - 10 to 30 cycles
– Miss rate - .1% to 2%
– TLB size - 32 B to 8 KB



V=0  pages either 
reside on disk or 
have not yet been 

allocated.
OS handles V=0

“Page fault”

Physical and virtual 
pages must be the 

same size!

The TLB Caches Page Table Entries

TLB

Page Table

2

0

1
3

virtual address

page off

2
frame page

2
50

physical address

page off

TLB caches 
page table 

entries.

MIPS handles TLB misses in 
software (random 

replacement). Other 
machines use hardware.

for ASID

Physical
frame

address
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Paging Hardware with TLB
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Opteron data TLB Organization

D: dirty bit
V: valid bit
Step 1&2: send virtual address to all tags

4-step operation
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Page Size
• An architectural choice…
• Large pages are good:

– Reduces page table size
– Amortizes the long disk access
– If spatial locality is good then hit rate will improve
– Reduce the number of TLB miss

• Large pages are bad:
– More internal fragmentation

• If everything is random each structure’s last page is only 
half full 

– Process start up time takes longer
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Summary (1/3): 
The Cache Design Space

• Several interacting dimensions
– cache size
– block size
– associativity
– replacement policy
– write-through vs write-back
– write allocation

• The optimal choice is a compromise
– depends on access characteristics

• workload
• use (I-cache, D-cache, TLB)

– depends on technology / cost
• Simplicity often wins

Associativity

Cache Size

Block Size

Bad

Good

Less More

Factor A Factor B
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Summary (2/3): 
Caches

• The Principle of Locality:
– Program access a relatively small portion of the address space at 

any instant of time.
• Temporal Locality: Locality in Time
• Spatial Locality: Locality in Space

• Three Major Categories of Cache Misses:
– Compulsory Misses: sad facts of life.  Example: cold start misses.
– Capacity Misses: increase cache size
– Conflict Misses:  increase cache size and/or associativity.

• Nightmare Scenario: ping pong effect!
• Write Policy: Write Through vs. Write Back
• Today CPU time is a function  of (ops, cache misses) vs. just 

f(ops): affects Compilers, Data structures, and Algorithms
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Summary (3/3): 
TLB, Virtual Memory

• Page tables map virtual address to physical address
• TLBs are important for fast translation
• TLB misses are significant in processor performance
• Caches, TLBs, Virtual Memory all understood by examining how 

they deal with 4 questions: 
1) Where can block be placed?
2) How is block found? 
3) What block is replaced on miss? 
4) How are writes handled?

• Today VM allows many processes to share single memory without 
having to swap all processes to disk; 

• Today VM protection is more important than memory hierarchy 
benefits, but computers insecure
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Why Protection?
• Multiprogramming forces us to worry about it

– A computer is shared by several programs 
simultaneously 

• Hence lots of processes
– Hence task switch overhead
– HW must provide savable state
– OS must promise to save and restore properly
– Most machines task switch every few milliseconds
– A task switch typically takes several microseconds

• Process protection
– Each process has its own status state such that one 

process cannot modify another


