
CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-1

5008: Computer
Architecture

5008: Computer 5008: Computer
ArchitectureArchitecture

Appendix C Appendix C –– Review of Review of MemmoryMemmory
HierarchyHierarchy

1977: DRAM faster than microprocessors
Apple][(1977)

Steve
WozniakSteve

Jobs

CPU: 1000 ns
DRAM: 400 ns

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-3

CPU vs. Memory Performance Trends
Relative performance (vs. 1980 perf.) as a function of year

+7%/year

+55%/year

+35%/year

Performance gap between processor and memory…

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-4

Why?
• Because of a fundamental constraint:

– The larger the memory,
the higher the access latency.

– A characteristic of all present memory technologies.
• This will remain true in all future technologies!

– Quantum mechanics gives a minimum size for bits
• (Assuming energy density is limited.)

– Thus n bits require Ω(n) volume of space.
– At light speed, random access takes Ω(n1/3) time!

• (Assuming a roughly flat region of space time.)
• Of course, specific memory technologies (or a suite of

available technologies) may scale even worse than this!

Ω(n1/3)

(Beyond
some point.)

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-5

What Programmers Want
• Programmers like to be insulated from physics

– It’s easier to think about programming models if you
don’t have to worry about physical constraints.

– However, ignoring physics in algorithm design always
sacrifices some runtime efficiency.

– But, programmer productivity is more important
economically than performance (for now).

• Programmers want to pretend they have the
following memory model:
– An unlimited number of memory locations,

all accessible instantly!

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-6

What We Can Provide?
• A small number of memory locations, all

accessible quickly; and/or
• A large number of memory locations, all

accessible more slowly; and/or
• A memory hierarchy,

– Has both kinds of memory (& maybe others)
– Can automatically transfer data between them

• often (hopefully) before it’s needed
– Approximates (gives the illusion of having):

• As many locations as the large memory has,
• All accessible almost as quickly as the small memory!

Since 1980, CPU has outpaced DRAM ...

CPU
60% per yr
2X in 1.5 yrs

DRAM
9% per yr
2X in 10 yrs

10

DRAM

CPU

Performance
(1/latency)

100

1000

19
80

20
00

19
90

Year

Gap grew 50% per
year

Q. How do architects address this gap?
A. Put smaller, faster “cache” memories

between CPU and DRAM.
Create a “memory hierarchy”.

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-8

Big & Fast: How is that possible?
• Illusion of big & fast is enabled by pre-fetching

of data from remote locations (before needed).
• How can simple, dumb hardware figure out what

remote data to automatically fetch, before we
need it?

• Basis for this: Principle of Locality
– When a location is accessed, it and “nearby” locations

are likely to be accessed again soon.
• “Temporal” locality - Same location likely again soon.
• “Spatial” locality - Nearby locations likely soon.

• This only works if the programmer cooperates!

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-9

Simple Hierarchy Example
• Note many orders of magnitude change in

characteristics between levels:

×128→ ×8192→ ×200→

×4 → ×100 → ×50,000 →(for random access)

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-10

Cache Basics
• A cache is a (usually automatically managed)

store that is intermediate in size, speed,
and cost-per-bit between the programmer-
visible registers (usually SRAM) and main
physical memory (usually DRAM).

• The cache itself may be SRAM or fast
DRAM.

• There may be >1 levels of caches; for now
we’ll focus on a single level.

Levels of the Memory Hierarchy

CPU Registers
100s Bytes
<10s ns

Cache
K Bytes
10-100 ns
1-0.1 cents/bit

Main Memory
M Bytes
200ns- 500ns
$.0001-.00001 cents /bit
Disk
G Bytes, 10 ms
(10,000,000 ns)

10 - 10 cents/bit-5 -6

Capacity
Access Time
Cost

Tape
infinite
sec-min
10 -8

Registers

Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
8-128 bytes

OS
512-4K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-12

Programmer Control, or Not?
• Even if the programmer isn’t afraid of the

physics, hierarchies are still useful. Why?
– The lower (larger, slower) levels are cheaper per bit.
– Generalized Amdahl’s Law demands we include memory

at different cost levels in our design.
• But: Automatic movement between hierarchy

levels can’t always give you the best algorithm!
• The ideal memory hierarchy would…

– Allow (but not require) programmer control of data
movement at all levels.

• the ambitious & skilled programmer could then better
optimize how the hardware is used.

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-13

Memory Scaling Isn’t Everything

• The goal of memory hierarchy:
– Scale available memory to arbitrarily large sizes
– without a big impact on access time.

• But should scaling memory PER CPU really be the
goal in systems design? No!

• Consider:
– The cost/size/power of a sufficiently large memory,

network file server, or tape archive system can easily
far exceed that of a CPU.

• A balanced system design should also scale the
number of CPUs with the amount of memory!

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-14

Memory Architectures
• As your problem size increases, here’s what

you should do, as a systems engineer:
– Add memory to your CPU (at the appropriate

hierarchy level for best overall performance/cost)
• Up until the size/cost/power/latency due to memory

access starts to dominate.
– Then, rather than keep throwing more hierarchy

onto that one poor CPU,
• Add another CPU to the system, and build another

memory hierarchy around it.
• CPUs can be networked

One Scalable Architecture

CPU

Local memory hierarchy
(optimal fixed size)

Processing Node

CPU

Local memory hierarchy
(optimal fixed size)

Processing Node

CPU

Local memory hierarchy
(optimal fixed size)

Processing Node

CPU

Local memory hierarchy
(optimal fixed size)

Processing Node

CPU

Local memory hierarchy
(optimal fixed size)

Processing Node

CPU

Local memory hierarchy
(optimal fixed size)

Processing Node

Interconnection
network

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-16

Advantages
• Mirrors the architecture of physics
• Every item in memory has a CPU relatively nearby

that can process it.
• To manipulate some remote data in a certain way,

the code to do the manipulation can be moved to
the data, rather than vice-versa.
– This can be much cheaper, as data sizes grow!

• Every item in memory can still be accessed, if
needed, by any CPU, via sharing
– Through interconnection-network, message-passing.
– Memory accessible by a CPU still scales arbitrarily.

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-17

Outline
• Review
• Cache
• Cache Performance
• 6 Basic Cache Optimization
• Virtual Memory

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-18

The Principle of Locality
• The Principle of Locality:

– Program access a relatively small portion of the address
space at any instant of time.

• Two Different Types of Locality:
– Temporal Locality (Locality in Time): If an item is referenced,

it will tend to be referenced again soon (e.g., loops, reuse)
– Spatial Locality (Locality in Space): If an item is referenced,

items whose addresses are close by tend to be referenced
soon
(e.g., straightline code, array access)

• Last 15 years, HW relied on locality for speed

It is a property of programs which is exploited in machine design.

Memory Hierarchy: Terminology
• Hit: data appears in some block in the upper level (example:

Block X)
– Hit Rate: the fraction of memory access found in the upper level
– Hit Time: Time to access the upper level which consists of

RAM access time + Time to determine hit/miss
• Miss: data needs to be retrieve from a block in the lower level

(Block Y)
– Miss Rate = 1 - (Hit Rate)
– Miss Penalty: Time to replace a block in the upper level +

Time to deliver the block the processor
• Hit Time << Miss Penalty (500 instructions on 21264!)

Lower Level
MemoryUpper Level

Memory
To Processor

From Processor
Blk X

Blk Y

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-20

Cache Measures
• Hit rate: fraction found in that level

– So high that usually talk about Miss rate
– Miss rate fallacy: as MIPS to CPU performance,

miss rate to average memory access time in memory
• Average memory-access time

= Hit time + Miss rate x Miss penalty (ns or clocks)
• Miss penalty: time to replace a block from lower level,

including time to replace in CPU
– access time: time to lower level

= f(latency to lower level)
– transfer time: time to transfer block

=f(BW between upper & lower levels)

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-21

missmisshitacc TfTT ++=

Cache Performance Formulas
(Average memory access time) =
(Hit time) + (Miss rate)×(Miss penalty)
• The times Tacc, Thit, and T+miss can be all either:

– Real time (e.g., nanoseconds)
– Or, number of clock cycles

• In contexts where cycle time is known to be a constant

• Important:
– T+miss means the extra (not total) time for a miss

• in addition to Thit, which is incurred by all accesses

CPU Cache
Lower levels
of hierarchy

Hit time

Miss penalty

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-22

Four Questions for Memory Hierarchy
• Consider any level in a memory hierarchy.

– Remember a block is the unit of data transfer.
• Between the given level, and the levels below it

• The level design is described by four behaviors:
– Block Placement:

• Where could a new block be placed in the level?
– Block Identification:

• How is a block found if it is in the level?
– Block Replacement:

• Which existing block should be replaced if necessary?
– Write Strategy:

• How are writes to the block handled?

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-23

Direct-Mapped Placement
• A block can only go into one frame in the cache

– Determined by block’s address (in memory space)
• Frame number usually given by some low-order bits of block

address.

• This can also be expressed as:
(Frame number) =

(Block address) mod (Number of frames in cache)
• Note that in a direct-mapped cache,

– block placement & replacement are both completely
determined by the address of the new block that is to
be accessed.

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-24

Direct-Mapped Identification
Tags Block frames

Address

Decode & Row Select

?Compare Tags

Hit

Tag Frm# Off.

Data Word

Mux
select

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-25

Fully-Associative Placement
• One alternative to direct-mapped is…

– Allow block to fill any empty frame in the cache.
• How do we then locate the block later?

– Can associate each stored block with a tag
• Identifies the block’s home address.

– When the block is needed, we can use the cache as an
associative memory, using the tag to match all frames in
parallel, to pull out the appropriate block.

• Another alternative to direct-mapped is
placement under full program control.
– A register file can be viewed as a small programmer-

controlled cache (w. 1-word blocks).

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-26

Fully-Associative Identification
Block addrs Block frames

Address

Parallel Compare
& Select

Block addr Off.

Data Word

Mux
select

Note that, compared to Direct:

• More address bits have to be
stored with each block frame.

• A comparator is needed for each
frame, to do the parallel
associative lookup.

Hit

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-27

Set-Associative Placement
• The block address determines not a single frame,

but a frame set (several frames, grouped
together).
– (Frame set #) = (Block address) mod (# of frame sets)

• The block can be placed associatively anywhere
within that frame set.

• If there are n frames in each frame set, the
scheme is called “n-way set-associative”.

• Direct mapped = 1-way set-associative.
• Fully associative: There is only 1 frame set.

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-28

Set-Associative Identification
Tags Block frames

Address

Hit

Tag Set# Off.

Data Word

Mux
select

Block address

Set Select

Parallel Compare

• Intermediate between direct-
mapped and fully-associative in
number of tag bits needed to be
associated with cache frames.

• Still need a comparator for each
frame (but only those in one set
need be activated).

Note:
4 separate

sets

Q1: Where can a block be placed in
the upper level?

• Block 12 placed in 8 block cache:
– Fully associative, direct mapped, 2-way set

associative
– S.A. Mapping = Block Number Modulo Number Sets

Cache

01234567 0123456701234567

Memory

1111111111222222222233
01234567890123456789012345678901

Full Mapped Direct Mapped
(12 mod 8) = 4

2-Way Assoc
(12 mod 4) = 0

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-30

Cache Size Equation
• Simple equation for the size of a cache:

(Cache size) = (Block size) × (Number of sets)
× (Set Associativity)

• Can relate to the size of various address fields:
(Block size) = 2(# of offset bits)

(Number of sets) = 2(# of index bits)

(# of tag bits) = (# of memory address bits)
− (# of index bits) − (# of offset bits)

Memory address

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-31

Q2: How is a block found if
it is in the upper level?

• Tag on each block
– No need to check index or block offset

• Increasing associativity shrinks index, expands
tag

Block
Offset

Block Address

IndexTag

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-32

Q3: Replacement Strategies
• Which existing block do we replace, when a new

block comes in?
• Direct-mapped:

– There’s only one choice!
• Associative (fully- or set-):

– If any frame in the set is empty, pick one of those.
– Otherwise, there are many possible strategies:

• (Pseudo-) random
– Simple, fast, and fairly effective

• Least-recently used (LRU), and approximations
thereof

– Makes little difference in larger caches
• First in, first out (FIFO)

– Use time since block was read
– May be easier to track than time since last access

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-33

Write Strategies
• Most accesses are reads, not writes

– Especially if instruction reads are included
• Writes are more difficult

– Can’t write to cache till we know the right block
– Object written may have various sizes (1-8 bytes)

• When to synchronize cache with memory?
– Write through - Write to cache & to memory

• Prone to stalls due to high bandwidth requirements
– Write back - Write to memory upon replacement

• Memory may be out of date

Q4: What happens on a write?
Write-Through Write-Back

Policy

Data written to cache
block

also written to lower-
level memory

Write data only to
the cache

Update lower level
when a block falls
out of the cache

Debug Easy Hard

Do read misses
produce writes? No Yes

Do repeated
writes make it
to lower level?

Yes No

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-35

Write Miss Strategies
• What do we do on a write to a block that’s

not in the cache?
• Two main strategies:

– Write-allocate (fetch on write) - Cache the
block.

– No write-allocate (write around) - Just write
to memory.

• Write-back caches tend to use write-
allocate.

• White-through tends to use no write-
allocate.

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-36

Dirty Bits
• Useful in write-back strategies to

minimize memory bandwidth
• When a cache block is modified, it is

marked as “dirty” (no longer a
pristine copy of memory)

• When a block is replaced, it only
needs to be written back to memory
if it is dirty

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-37

Another Write Strategy
• Maintain a FIFO queue of all dirty cache frames

(e.g. can use a doubly-linked list)
– When a block is written to, put it at the end of the

queue, if it’s not already dirty
– When a dirty block is evicted, remove it from the queue,

and write it immediately
• Meanwhile, take items from top of queue and

write them to memory as fast as bus can handle
– Reads might take priority, or have a separate bus

• Advantages: Write stalls are minimized, while
keeping memory as up-to-date as possible

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-38

Write Buffers
• A mechanism to help reduce write stalls
• On a write to memory, block address and

data to be written are placed in a write
buffer.

• CPU can continue immediately
– Unless the write buffer is full.

• Write merging:
– If the same block is written again before it has

been flushed to memory, old contents are
replaced with new contents.

Write Merging Example

Write Buffers for Write-Through Caches

Q. Why a write buffer ?

Processor
Cache

Write Buffer

Lower
Level

Memory

Holds data awaiting write-through to
lower level memory

A. So CPU doesn’t stall

Q. Why a buffer, why not just
one register ?

A. Bursts of writes are
common.

Q. Are Read After Write
(RAW) hazards an issue for
write buffer?

A. Yes! Drain buffer before next
read, or send read 1st after check
write buffers.

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-41

Outline
• Review
• Cache
• Cache Performance
• 6 Basic Cache Optimization
• Virtual Memory

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-42

Cache Performance Review
• From chapter 1:

– (Memory stall cycles) =
(Instruction count) ×
(Accesses per instruction) × (Miss rate) ×
(Miss penalty)

• A better metric:
– (Average memory access time) =

(Hit time) + (Miss rate) × (Miss penalty)

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-43

More Cache Performance Metrics
• Can split access time into instructions & data:

Avg. mem. acc. time =
(% instruction accesses) × (inst. mem. access time) +
(% data accesses) × (data mem. access time)

• Another formula from chapter 1:
CPU time = (CPU execution clock cycles + Memory stall

clock cycles) × cycle time
– Useful for exploring ISA changes

• Can break stalls into reads and writes:
Memory stall cycles =

(Reads × read miss rate × read miss penalty) +
(Writes × write miss rate × write miss penalty)

Hit time + miss rate × miss penalty =

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-44

Factoring out Instruction Count
• Gives (lumping together reads & writes):

• May replace:

– So that miss rates aren’t affected by
redundant accesses to same location within an
instruction.

⎟
⎠
⎞

⎜
⎝
⎛ ××+

××=

penaltyMissrateMiss
Inst

AccessesCPI

timecycleClockICtimeCPU

exec

ninstructio
MissesrateMiss

ninstructio
Accesses

→×

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-45

Improving Cache Performance
• Reducing cache miss Penalty
• Reducing miss rate
• Reducing hit time

• Note that by Amdahl’s Law, there will be
diminishing returns from reducing only hit
time or amortized miss penalty by itself,
instead of both together

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-46

Three Types of Misses
• Compulsory

– During a program, the very first access to a block will
not be in the cache (unless pre-fetched)

• Capacity
– The working set of blocks accessed by the program is

too large to fit in the cache

• Conflict
– Unless cache is fully associative, sometimes blocks may

be evicted too early (compared to fully-associative)
because too many frequently-accessed blocks map to the
same limited set of frames.

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-47

Miss Statistics
• See Fig. C.8 (too large to fit legibly on

slide)
• Note:

– Conflict misses are a significant fraction of
total misses in a direct-mapped cache.

– Going from direct-mapped to 2-way helps
almost as much as doubling cache size.

– Going from direct-mapped to 4-way is better
than doubling cache size.

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-48

Misses by Type

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-49

As fraction of total misses

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-50

Outline
• Review
• Cache
• Cache Performance
• 6 Basic Cache Optimization
• Virtual Memory

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-51

6 Basic Cache Optimizations
• Reducing Miss Rate
1. Larger Block size (compulsory misses)
2. Larger Cache size (capacity misses)
3. Higher Associativity (conflict misses)

• Reducing Miss Penalty
4. Multilevel Caches
5. Giving Reads Priority over Writes

• Reducing hit time
6. Avoiding Address Translation during Indexing of the

Cache

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-52

1. Larger Block Sizes
• Larger block size no. of blocks ↓
• Obvious advantages: reduce compulsory misses

– Reason is due to spatial locality
• Obvious disadvantage

– Higher miss penalty: larger block takes longer to move
– May increase conflict misses and capacity miss if cache

is small

Don’t let increase in miss penalty outweigh the decrease in miss rate

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-53

Miss Rate vs. Block Size

Larger block may increase conflict and capacity miss

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-54

Actual Miss Rate vs. Block Size

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-55

Miss Rate VS. Miss Penalty
• Assume memory system takes 80 CC of overhead

and then deliver 16 bytes every 2 CC. And the
Hit time = 1 CC

• Miss penalty
– Block size 16 = 80 + 2 = 82
– Block size 32 = 80 + 2 * 2 = 84
– Block size 256 = 80 + 16 * 2 = 112

• AMAT = hit_time + miss_rate*miss_penalty
– 16-byte in a 4 KB cache = 1 + 8.57% * 82 = 8.027 CC
– 256-byte in a 256 KB cache = 1 + 0.49% * 112 = 1.549 CC

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-56

AMAT VS. Block Size for
Different-Size Caches

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-57

2. Large Caches
• Cache size↑ miss rate↓; hit time↑
• Help with both conflict and capacity

misses
• May need longer hit time AND/OR

higher HW cost
• Popular in off-chip caches

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-58

3. Higher Associativity
• (Fig. C.8, C.9)

– 8-way set associative is for practical purposes as
effective in reducing misses as fully associative

• 2: 1 Cache rule of thumb
– Miss rate: 2 way set associative of size N/ 2 is about

the same as a direct mapped cache of size N (held for
cache size < 128 KB)

• Greater associativity comes at the cost of
increased hit time
– Lengthen the clock cycle

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-59

4. Multi-Level Caches
• Probably the best miss-penalty reduction
• Performance measurement for 2-level

caches
– Average memory access time (AMAT) =

Hit-time-L1 + Miss-rate-L1× Miss-penalty-L1
– Miss-penalty-L1 = Hit-time-L2 + Miss-rate-L2 ×

Miss-penalty-L2
– AMAT = Hit-time-L1 + Miss-rate-L1 ×

(Hit-time-L2 + Miss-rate-L2 × Miss-penalty-L2)

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-60

Multi-Level Caches (Cont.)
• Definitions:

– Local miss rate: misses in this cache divided by the total
number of memory accesses to this cache (Miss-rate-L2)

– Global miss rate: misses in this cache divided by the
total number of memory accesses generated by CPU
(Miss-rate-L1 x Miss-rate-L2)

– Global Miss Rate is what matters
• Advantages:

– Capacity misses in L1 end up with a significant penalty
reduction since they likely will get supplied from L2

• No need to go to main memory
– Conflict misses in L1 similarly will get supplied by L2

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-61

Effect of 2-level Caching
• Holding size of 1st level cache constant:

– Decreases miss penalty of 1st-level cache.
– Or, increases average global hit time a bit:

• hit time-L1 + miss rate-L1 x hit time-L2
– but decreases global miss rate

• Holding total cache size constant:
– Global miss rate, miss penalty about the same
– Decreases average global hit time significantly!

• New L1 much smaller than old L1

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-62

Miss Rate Example
• Suppose that in 1000 memory references there are 40 misses in

the first-level cache and 20 misses in the second-level cache
– Miss rate for the first-level cache = 40/1000 (4%)
– Local miss rate for the second-level cache = 20/40 (50%)
– Global miss rate for the second-level cache = 20/1000 (2%)

• Assume miss-penalty-L2 is 200 CC, hit-time-L2 is 10 CC, hit-time-
L1 is 1 CC, and 1.5 memory reference per instruction. What is
average memory access time and average stall cycles per
instructions? Ignore writes impact.
– AMAT = Hit-time-L1 + Miss-rate-L1 × (Hit-time-L2 + Miss-rate-L2×

Miss-penalty-L2) = 1 + 4% × (10 + 50% × 200) = 5.4 CC
– Average memory stalls per instruction = Misses-per-instruction-L1 ×

Hit-time-L2 + Misses-per-instructions-L2×Miss-penalty-L2
= (40×1.5/1000) × 10 + (20×1.5/1000) ×200 = 6.6 CC

– Or (5.4 – 1.0) × 1.5 = 6.6 CC

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-63

Comparing Local and Global Miss Rates

32KB L1 cache

More assumptions are shown in the legend of Figure C.14

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-64

Relative Execution Time by
L2-Cache Size

Cache size is
what matters

Reference execution time
of 1.0 is for 8192KB L2
cache with 1 CC latency
on a L2 hit

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-65

Comparing Local and Global Miss Rates
• Huge 2nd level caches
• Global miss rate close to single level cache rate

provided L2 >> L1
• Global cache miss rate should be used when

evaluating second-level caches (or 3rd, 4th,… levels
of hierarchy)

• Many fewer hits than L1, target reduce misses

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-66

Example: Impact of L2
Cache Associativity

• Hit-time-L2
– Direct mapped = 10 CC;
– 2-way set associativity = 10.1 CC (usually round up to

integral number of CC, 10 or 11 CC)
• Local-miss-rate-L2

– Direct mapped = 25%;
– 2-way set associativity = 20%

• Miss-penalty-L2 = 200CC
• Impact of Miss-penalty-L2

– Direct mapped = 10 + 25% * 200 = 60 CC
– 2-way (10 CC) = 10 + 20% * 200 = 50 CC
– 2-way (11 CC) = 11 + 20% * 200 = 51 CC

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-67

5: Critical Word First and
Early Restart

• Do not wait for full block to be loaded before restarting CPU
– Critical Word First – request the missed word first from memory

and send it to the CPU as soon as it arrives; let the CPU continue
execution while filling the rest of the words in the block. Also
called wrapped fetch and requested word first

– Early restart -- as soon as the requested word of the block
arrives, send it to the CPU and let the CPU continue execution

• Benefits of critical word first and early restart depend on
– Block size: generally useful only in large blocks
– Likelihood of another access to the portion of the block that has

not yet been fetched
• Spatial locality problem: tend to want next sequential word, so not

clear if benefit

CPU normally needs one word
of the block at a time

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-68

5. Giving Priority to Read
Misses Over Writes

• In write through, write buffers complicate memory access
in that they might hold the updated value of location
needed on a read miss
– RAW conflicts with main memory reads on cache misses

• Read miss waits until the write buffer empty increase
read miss penalty

• Check write buffer contents before read, and if no
conflicts, let the memory access continue

• Write Back?
– Read miss replacing dirty block
– Normal: Write dirty block to memory, and then do the read
– Instead, copy the dirty block to a write buffer, then do the

read, and then do the write
– CPU stall less since restarts as soon as do read

SW R3, 512(R0) ;cache index 0
LW R1, 1024(R0) ;cache index 0
LW R2, 512(R0) ;cache index 0

R2=R3 ?

read priority over write

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-69

6. Avoiding Address Translation
during Indexing of the Cache

• Using virtual address for cache
– index
– tag comparison

virtual cache (eliminate address translation times)

Address
Translation

Physical
Address Cache

Indexing

Virtual
Address

Virtual Cache

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-70

Virtually Addressed Caches

CPU

TLB

$

MEM

VA

PA

PA

Conventional
Organization

CPU

$

TLB

MEM

VA

VA

PA

Virtually Addressed Cache
Translate only on miss

Synonym (Alias) Problem

VA
Tags

$ means cache

CPU

$ TLB

MEM

VA

VA
Tags

PA
L2 $

Overlap $ access with VA
translation: requires $

index to remain invariant
across translation

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-71

Virtual Addressed Caches
• Parallel rather than sequential access

– Physical addressed caches access the TLB to generate
the physical address, then do the cache access

• Avoid address translation during cache index
– Implies virtual addressed cache
– Address translation proceeds in parallel with cache

index
• If translation indicates that the page is not mapped - then

the result of the index is not a hit
• Or if a protection violation occurs - then an exception

results
• All is well when neither happen

• Too good to be true?

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-72

Why not Virtual Cache?
• Protection – necessary part of the virtual to

physical address translation
– Copy protection information on a miss, add a field to

hold it, and check it on every access to virtually
addressed cache.

• Task switch causes the same virtual address to
refer to different physical address
– Hence cache must be flushed

• Creating huge task switch overhead
• Also creates huge compulsory miss rates for new process

– Use PID’s as part of the tag to aid discrimination

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-73

Miss Rate of Virtual Caches
PIDs increases Uniprocess – 0.3% to 0.5%
PIDs saves 0.6% to 4.3% over purging

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-74

Why not Virtual Cache? (Cont.)
• Synonyms or Alias

– OS and User code have different virtual addresses
which map to the same physical address (facilitates
copy-free sharing)

– Two copies of the same data in a virtual cache
consistency issue

– Anti-aliasing (HW) mechanisms guarantee single copy
• On a miss, check to make sure none match PA of the data

being fetched (must VA PA); otherwise, invalidate
– SW can help - e.g. SUN’s version of UNIX

• Page coloring - aliases must have same low-order 18 bits
• I/O – use PA

– Require mapping to VA to interact with a virtual cache

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-75

Outline
• Review
• Cache
• Cache Performance
• 6 Basic Cache Optimization
• Virtual Memory

The Limits of Physical Addressing

CPU Memory
A0-A31 A0-A31

D0-D31 D0-D31

“Physical addresses” of memory locations

Data

All programs share one address space:
The physical address space

No way to prevent a program from accessing
any machine resource

Machine language programs must be
aware of the machine organization

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-77

Virtual Memory
• Recall: Many processes use only a small part of address

space.
• Virtual memory divides physical memory into blocks (called

page or segment) and allocates them to different processes
• With virtual memory, the CPU produces virtual addresses

that are translated by a combination of HW and SW to
physical addresses, which accesses main memory. The
process is called memory mapping or address translation

• Today, the two memory-hierarchy levels controlled by
virtual memory are DRAMs and magnetic disks

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-78

Virtual Memory (Cont.)
• Permits applications to grow bigger than main memory size
• Helps with multiple process management

– Each process gets its own chunk of memory
– Permits protection of 1 process’ chunks from another
– Mapping of multiple chunks onto shared physical memory
– Mapping also facilitates relocation (a program can run in any

memory location, and can be moved during execution)
– Application and CPU run in virtual space (logical memory, 0 –

max)
– Mapping onto physical space is invisible to the application

• Cache vs. VM
– Block becomes a page or segment
– Miss becomes a page or address fault

Solution: Add a Layer of Indirection

CPU Memory

A0-A31 A0-A31

D0-D31 D0-D31

Data

User programs run in an standardized
virtual address space

Address Translation hardware
managed by the operating system (OS)

maps virtual address to physical memory

“Physical
Addresses”

Address
Translation

Virtual Physical

“Virtual Addresses”

Hardware supports “modern” OS features:
Protection, Translation, Sharing

Three Advantages of Virtual Memory
• Translation:

– Program can be given consistent view of memory, even though
physical memory is scrambled

– Makes multithreading reasonable (now used a lot!)
– Only the most important part of program (“Working Set”) must be

in physical memory.
– Contiguous structures (like stacks) use only as much physical

memory as necessary yet still grow later.
• Protection:

– Different threads (or processes) protected from each other.
– Different pages can be given special behavior

• (Read Only, Invisible to user programs, etc).
– Kernel data protected from User programs
– Very important for protection from malicious programs

• Sharing:
– Can map same physical page to multiple users

(“Shared memory”)

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-81

Virtual Memory

Mapping by a
page table

4 pages

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-82

Typical Page Parameters

Page Tables Encode Virtual Address Spaces

A machine
usually supports

pages of a few
sizes

(MIPS R4000):

Physical
Memory Space

A valid page table entry codes physical
memory “frame” address for the page

A virtual address space
is divided into blocks

of memory called pages
frame

frame

frame

frame

A page table is indexed by a
virtual address

virtual
address

Page Table

OS
manages
the page
table for
each ASID

Physical
Memory Space

• Page table maps virtual page numbers to physical
frames (“PTE” = Page Table Entry)

• Virtual memory => treat memory ≈ cache for disk

Details of Page Table
Virtual Address

Page Table

index
into
page
table

Page Table
Base Reg

V Access
Rights PA

V page no. offset
12

table located
in physical
memory

P page no. offset
12

Physical Address

frame

frame

frame

frame

virtual
address

Page Table

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-85

Example

11 0113

2 * 4 + 1 = 9 Physical space = 25

Logical space = 24

Page size = 22

PT Size = 24/22= 22

Each PT entry needs 5-2 bits

010 019

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-86

Cache vs. VM Differences
• Replacement

– Cache miss handled by hardware
– Page fault usually handled by OS

• Addresses
– VM space is determined by the address size of the CPU
– Cache space is independent of the CPU address size

• Lower level memory
– For caches - the main memory is not shared by

something else
– For VM - most of the disk contains the file system

• File system addressed differently - usually in I/ O space
• VM lower level is usually called SWAP space

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-87

2 VM Styles - Paged or Segmented?

• Virtual systems can be categorized into two classes: pages (fixed-
size blocks), and segments (variable-size blocks)

SegmentPage

Not always (small segments
may transfer just a few bytes)

Yes (adjust page size to
balance access time and
transfer time)

Efficient disk traffic

External fragmentation (unused
pieces of main memory)

Internal fragmentation
(unused portion of page)

Memory use
inefficiency

Hard (must find contiguous,
variable-size, unused portion of
main memory)

Trivial (all blocks are the
same size)

Replacing a block

May be visible to application
programmer

Invisible to application
programmer

Programmer visible?
Two (segment and offset)OneWords per address

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-88

Virtual Memory – The Same 4 Questions
• Block Placement

– Choice: lower miss rates and complex placement or vice
versa

• Miss penalty is huge, so choose low miss rate place
anywhere

• Similar to fully associative cache model

• Block Identification - both use additional data
structure
– Fixed size pages - use a page table
– Variable sized segments - segment table

frame number frame offset
f (l-n) d (n)

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-89

The Same 4 Questions for VM
• Block Replacement -- LRU is the best

– However true LRU is a bit complex – so use
approximation

• Page table contains a use tag, and on access the use tag is
set

• OS checks them every so often - records what it sees in a
data structure - then clears them all

• On a miss the OS decides who has been used the least and
replace that one

• Write Strategy -- always write back
– Due to the access time to the disk, write through is silly
– Use a dirty bit to only write back pages that have been

modified

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-90

Techniques for Fast Address Translation

• Page table is kept in main memory (kernel memory)
– Each process has a page table

• Every data/instruction access requires two
memory accesses
– One for the page table and one for the data/instruction
– Can be solved by the use of a special fast-lookup

hardware cache called associative registers or
translation look-aside buffers (TLBs)

• If locality applies then cache the recent
translation
– TLB = translation look-aside buffer
– TLB entry: virtual page no, physical page no, protection

bit, use bit, dirty bit

MIPS Address Translation
“Physical

Addresses”

CPU Memory
A0-A31 A0-A31

D0-D31 D0-D31

Data

TLB also contains
protection bits for virtual address

Virtual Physical

“Virtual Addresses”

Fast common case: Virtual address is in TLB,
process has permission to read/write it.

What is
the table

of
mappings

that it
caches?

Translation
Look-Aside

Buffer
(TLB)

Translation Look-Aside Buffer (TLB)
A small fully-associative cache of

mappings from virtual to physical addresses

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-92

TLB
• The TLB must be on chip; otherwise

it is worthless
– Fully associative – parallel search

• Typical TLB’s
– Hit time - 1 cycle
– Miss penalty - 10 to 30 cycles
– Miss rate - .1% to 2%
– TLB size - 32 B to 8 KB

V=0 pages either
reside on disk or
have not yet been

allocated.
OS handles V=0

“Page fault”

Physical and virtual
pages must be the

same size!

The TLB Caches Page Table Entries

TLB

Page Table

2

0

1
3

virtual address

page off

2
frame page

2
50

physical address

page off

TLB caches
page table

entries.

MIPS handles TLB misses in
software (random

replacement). Other
machines use hardware.

for ASID

Physical
frame

address

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-94

Paging Hardware with TLB

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-95

Opteron data TLB Organization

D: dirty bit
V: valid bit
Step 1&2: send virtual address to all tags

4-step operation

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-96

Page Size
• An architectural choice…
• Large pages are good:

– Reduces page table size
– Amortizes the long disk access
– If spatial locality is good then hit rate will improve
– Reduce the number of TLB miss

• Large pages are bad:
– More internal fragmentation

• If everything is random each structure’s last page is only
half full

– Process start up time takes longer

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-97

Summary (1/3):
The Cache Design Space

• Several interacting dimensions
– cache size
– block size
– associativity
– replacement policy
– write-through vs write-back
– write allocation

• The optimal choice is a compromise
– depends on access characteristics

• workload
• use (I-cache, D-cache, TLB)

– depends on technology / cost
• Simplicity often wins

Associativity

Cache Size

Block Size

Bad

Good

Less More

Factor A Factor B

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-98

Summary (2/3):
Caches

• The Principle of Locality:
– Program access a relatively small portion of the address space at

any instant of time.
• Temporal Locality: Locality in Time
• Spatial Locality: Locality in Space

• Three Major Categories of Cache Misses:
– Compulsory Misses: sad facts of life. Example: cold start misses.
– Capacity Misses: increase cache size
– Conflict Misses: increase cache size and/or associativity.

• Nightmare Scenario: ping pong effect!
• Write Policy: Write Through vs. Write Back
• Today CPU time is a function of (ops, cache misses) vs. just

f(ops): affects Compilers, Data structures, and Algorithms

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-99

Summary (3/3):
TLB, Virtual Memory

• Page tables map virtual address to physical address
• TLBs are important for fast translation
• TLB misses are significant in processor performance
• Caches, TLBs, Virtual Memory all understood by examining how

they deal with 4 questions:
1) Where can block be placed?
2) How is block found?
3) What block is replaced on miss?
4) How are writes handled?

• Today VM allows many processes to share single memory without
having to swap all processes to disk;

• Today VM protection is more important than memory hierarchy
benefits, but computers insecure

CA Lecture07 - memory hierarchy review(cwliu@twins.ee.nctu.edu.tw) 07-100

Why Protection?
• Multiprogramming forces us to worry about it

– A computer is shared by several programs
simultaneously

• Hence lots of processes
– Hence task switch overhead
– HW must provide savable state
– OS must promise to save and restore properly
– Most machines task switch every few milliseconds
– A task switch typically takes several microseconds

• Process protection
– Each process has its own status state such that one

process cannot modify another

