
CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-1

5008: Computer
Architecture

5008: Computer 5008: Computer
ArchitectureArchitecture

Chapter 2 Chapter 2 –– InstructionInstruction--Level Level
Parallelism and Its ExploitationParallelism and Its Exploitation

CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-2

Review from Last Lecture
• Instruction Level Parallelism

– Leverage implicit parallelism for performance:
• Loop unrolling by compiler to increase ILP
• Branch prediction to increase ILP
• Dynamic HW exploiting ILP

– Works when can’t know dependence at compile
time

– Can hide L1 cache misses
– Code for one machine runs well on another

CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-3

Review from Last Lecture
• Reservations stations: renaming to larger set of

registers + buffering source operands
– Prevents registers as bottleneck
– Avoids WAR, WAW hazards
– Allows loop unrolling in HW

• Not limited to basic blocks
• Helps cache misses as well
• Lasting Contributions

– Dynamic scheduling
– Register renaming
– Load/store disambiguation

CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-4

Outline
• Review
• Speculation
• Speculative Tomasulo Example
• Memory Aliases
• Exceptions
• VLIW
• Advanced Techniques for Instruction Delivery and

Speculation
• Summary

CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-5

Greater ILP ?
• Essentially a data flow execution model:

Operations execute as soon as their operands are
available

• Greater ILP: Overcome control dependence by
hardware speculating on outcome of branches
and executing program as if guesses were
correct
– Speculation ⇒ fetch, issue, and execute instructions as

if branch predictions were always correct
– Dynamic scheduling ⇒ only fetches and issues

instructions

CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-6

Speculation to greater ILP
3 components of HW-based speculation:
1. Dynamic branch prediction to choose which

instructions to execute
2. Speculation to allow execution of instructions

before control dependences are resolved
+ ability to undo effects of incorrectly

speculated sequence
3. Dynamic scheduling to deal with scheduling of

different combinations of basic blocks

CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-7

Adding Speculation to Tomasulo
• Must separate execution from allowing instruction

to finish or “commit”
• This additional step called instruction commit
• When an instruction is no longer speculative, allow

it to update the register file or memory
• Requires additional set of buffers to hold results

of instructions that have finished execution but
have not committed

• This reorder buffer (ROB) is also used to pass
results among instructions that may be speculated

CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-8

The Speculative MIPS
Replace store buffer

CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-9

Observations
• For an execution result, separate

– data forwarding (thru RS) path
– write-back (thru ROB) path

• Data forwarding path
– still use RS to buffer operands
– provide speculative register reads
– provide out-of-order completion

• Register write-back path
– use ROB to buffer results
– when it’s committed, update RF (in order)

CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-10

Reorder Buffer (ROB)
• Additional registers, just like reservation stations

– ROB is a source of operands
– It holds the results of instruction that have finished

execution but not committed
– Use ROB number instead of RS to indicate the source of

operands when execution completes (but not committed)
– It also uses to pass results among instructions that may

be speculated
– Each (pending) instruction occupies an ROB entry before

being committed
– Instructions in ROB are committed in order

• Once instruction commits, the result is put into register
– In case of misprediction, the corresponding ROB entry

will be flushed

CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-11

Reorder Buffer Entry
Each entry in the ROB contains four fields:
1. Instruction type

• a branch (has no destination result), a store (has a memory
address destination), or a register operation (ALU operation
or load, which has register destinations)

2. Destination
• Register number (for loads and ALU operations) or

memory address (for stores)
where the instruction result should be written

3. Value
• Value of instruction result until the instruction commits

4. Ready
• Indicates that instruction has completed execution, and the

value is ready

CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-12

4 Steps in Speculative Execution
1. Issue (or dispatch)

– Get instruction from the instruction queue
– In-order issue if available RS AND ROB slot; otherwise, stall
– Send operands to RS if they are in register or ROB
– Update the control entries to indicate the buffers are in use
– The ROB no. allocated for the result is sent to RS, so that the

number can be used to tag the result when it is placed on CDB
2. Execute (or issue)

– If not all operands are ready, monitor CDB and wait for it to
be computed (check for RAW hazards)

– When all operands are there, execution happens
3. Write Result

– Result posted to ROB via the CDB
– Waiting reservation stations can grab it as well

CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-13

4 Steps in Speculative Execution
4. Commit (or graduate) – instruction reaches the

ROB head
– Only the head of ROB is allowed committing
– Normal commit – when instruction reaches the ROB head

and its result is present in the buffer
• Update the register and remove the instruction from ROB

– Store – Update memory and remove the instruction from
ROB

– Branch with incorrect prediction – wrong speculation
• Flush ROB and the related FP OP queue (RS)
• Restart at the correct successor of the branch
• Remove the instruction from ROB

– Branch with correct prediction – finish the branch
• Remove the instruction from ROB

CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-14

Reorder Buffer Operation
• Holds instructions in FIFO order, exactly as issued
• When instructions complete, results placed into ROB

– Supplies operands to other instruction between execution
complete & commit ⇒ more registers like RS

– Tag results with ROB buffer number instead of reservation station
• Instructions commit ⇒values at head of ROB placed in registers
• As a result, easy to undo

speculated instructions
on mispredicted branches
or on exceptions

Reorder
BufferFP

Op
Queue

FP Adder FP Adder
Res Stations Res Stations

FP Regs

Commit path

CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-15

Example
• The same example as Tomasulo without speculation.

– L.D F6, 34(R2)
– L.D F2, 45(R3)
– MUL.D F0, F2, F4
– SUB.D F8, F6, F2
– DIV.D F10, F0, F6
– ADD.D F6, F8, F2

• Modified status tables
– Qj and Qk fields, and register status fields use ROB

(instead of RS)
– Add Dest field to RS (ROB to put the operation result)

• Show the status tables when MUL.D is ready to go to commit
– At this time, only two L.D instructions have been committed

Assume
FP ADD: 2 cycles

MUL: 10 cycles
DIV: 40 cycles

CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-16

Figure 3.30

CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-17

Comparisons
• Consider the case if MUL.D causes an interrupt…
• Tomasulo without speculation

– SUB.D and ADD.D have completed (clock cycle 16, slide
04-108)

• Tomasulo with speculation
– No instruction after the earliest uncompleted

instruction (MUL.D) is allowed to complete
– In-order commit

• Implication – ROB with in-order instruction
commit provides precise exceptions
– Precise exceptions – exceptions are handled in the

instruction order

CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-18

Tomasulo’s + ROB
• Performance is more sensitive to branch-prediction

– Impact of a mis-prediction will be higher

• Precise exception
– Handled by not recognizing the exception until it is ready

to commit
– If a speculation instruction raises an exception, the

exception is recorded in ROB
• Mis-prediction branch exception are flushed as well
• If the instruction reaches the ROB head take the

exception
• Tomasulo’s + ROB provides precise exceptions !!!

CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-19

Remark: Avoiding Memory Hazards
• WAW and WAR hazards through memory are eliminated

with speculation because actual updating of memory occurs
in order, when a store is at head of the ROB, and hence, no
earlier loads or stores can still be pending

• RAW hazards through memory are maintained by two
restrictions:
1. not allowing a load to initiate the second step of its execution

if any active ROB entry occupied by a store has a Destination
field that matches the value of the A field of the load, and

2. maintaining the program order for the computation of an
effective address of a load with respect to all earlier stores.

• these restrictions ensure that any load that accesses a
memory location written to by an earlier store cannot
perform the memory access until the store has written the
data

CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-20

Remark: Exceptions and Interrupts
• IBM 360/91 invented “imprecise interrupts”

– Computer stopped at this PC; its likely close to this address
– Not so popular with programmers
– Also, what about Virtual Memory? (Not in IBM 360)

• Technique for both precise interrupts/exceptions and
speculation: in-order completion and in-order commit
– If we speculate and are wrong, need to back up and restart

execution to point at which we predicted incorrectly
– This is exactly same as need to do with precise exceptions

• Exceptions are handled by not recognizing the exception
until instruction that caused it is ready to commit in ROB
– If a speculated instruction raises an exception, the exception

is recorded in the ROB
– This is why reorder buffers in all new processors

CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-21

Outline
• Review
• Speculation
• Speculative Tomasulo Example
• Memory Aliases
• Exceptions
• VLIW
• Advanced Techniques for Instruction Delivery and

Speculation
• Summary

CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-22

Getting CPI below 1
• CPI ≥ 1 if issue only 1 instruction every clock cycle
• Multiple-issue processors come in 3 flavors:

1. statically-scheduled superscalar processors,
2. dynamically-scheduled superscalar processors, and
3. VLIW (very long instruction word) processors

• 2 types of superscalar processors issue varying numbers of
instructions per clock
– use in-order execution if they are statically scheduled, or
– out-of-order execution if they are dynamically scheduled

• VLIW processors, in contrast, issue a fixed number of
instructions formatted either as one large instruction or as
a fixed instruction packet with the parallelism among
instructions explicitly indicated by the instruction (Intel/HP
Itanium)

CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-23

Multiple Issue with Speculation
• To maintain throughput of greater than one

instructions per cycle, we must handle multiple
instruction commits per clock

• Extend Tomasulo speculation algorithm to
multiple-issue scheme
– 2 challenges

• Instruction issue
• Monitor CDB for instruction completion

– In addition,
• How to handle multiple instruction commits per clock

cycle?

CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-24

VLIW: Very Large Instruction Word
• Each “instruction” has explicit coding for multiple

operations
– In IA-64, grouping called a “packet”
– In Transmeta, grouping called a “molecule” (with “atoms” as ops)

• Tradeoff instruction space for simple decoding
– The long instruction word has room for many operations
– By definition, all the operations the compiler puts in the long

instruction word are independent => execute in parallel
– E.g., 2 integer operations, 2 FP ops, 2 Memory refs, 1 branch

• 16 to 24 bits per field => 7*16 or 112 bits to 7*24 or 168 bits
wide

– Need compiling technique that schedules across several
branches

CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-25

Basic VLIW
• A VLIW uses multiple, independent functional units
• A VLIW packages multiple independent operations into one very long

instruction
– The burden for choosing and packaging independent operations falls on

compiler
– HW in a superscalar makes these issue decisions is unnecessary

• VLIW depends on enough parallelism for keeping FUs busy
– Loop unrolling and then code scheduling
– Compiler may need to do local scheduling and global scheduling

• Here we consider a VLIW processor might have instructions that
contain 5 operations, including 1 integer (or branch), 2 FP, and 2
memory references
– Depend on the available FUs and frequency of operation

CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-26

Recall: Unrolled Loop that
Minimizes Stalls for Scalar
1 Loop: L.D F0,0(R1)
2 L.D F6,-8(R1)
3 L.D F10,-16(R1)
4 L.D F14,-24(R1)
5 ADD.D F4,F0,F2
6 ADD.D F8,F6,F2
7 ADD.D F12,F10,F2
8 ADD.D F16,F14,F2
9 S.D 0(R1),F4
10 S.D -8(R1),F8
11 S.D -16(R1),F12
12 DSUBUI R1,R1,#32
13 BNEZ R1,LOOP
14 S.D 8(R1),F16 ; 8-32 = -24

14 clock cycles, or 3.5 per iteration

L.D to ADD.D: 1 Cycle
ADD.D to S.D: 2 Cycles

CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-27

Loop Unrolling in VLIW

Unrolled 7 times to avoid delays
7 results in 9 clocks, or 1.29 clocks per iteration
23 ops in 9 clock, average 2.5 ops per clock, 50% efficiency
Note: Need more registers in VLIW

CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-28

VLIW Problems – Technical
• Increase in code size

– Ambitious loop unrolling
– Whenever instructions are not full, the unused FUs

translate to waste bits in the instruction encoding
• An instruction may need to be left completely empty

if no operation can be scheduled
• Clever encoding or compress/decompress

CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-29

VLIW Problems – Logistical
• Operated in lock-step; no hazard

detection HW
– Early VLIW – all FUs must be kept synchronized

• A stall in any FU pipeline may cause the entire processor to
stall

• Compiler might prediction function units, but caches hard
to predict

– Recent VLIW – FUs operate more independently
• Compiler is used to avoid hazards at issue time
• Hardware checks allow for unsynchronized execution once

instructions are issued.
• Hardware complexity

CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-30

VLIW Problems – Logistical
• Binary code compatibility

– Pure VLIW => different numbers of functional units and
unit latencies require different versions of the code

– Need migration between successive implementations, or
between implementations recompliation

– Solution Object-code translation or emulation

CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-31

Intel/HP IA-64 “Explicitly Parallel
Instruction Computer (EPIC)”

• IA-64: instruction set architecture
• 128 64-bit integer regs + 128 82-bit floating point regs

– Not separate register files per functional unit as in old VLIW
• Hardware checks dependencies

(interlocks => binary compatibility over time)
• Predicated execution (select 1 out of 64 1-bit flags)

=> 40% fewer mispredictions?
• Itanium™ was first implementation (2001)

– Highly parallel and deeply pipelined hardware at 800Mhz
– 6-wide, 10-stage pipeline at 800Mhz on 0.18 µ process

• Itanium 2™ is name of 2nd implementation (2005)
– 6-wide, 8-stage pipeline at 1666Mhz on 0.13 µ process
– Caches: 32 KB I, 32 KB D, 128 KB L2I, 128 KB L2D, 9216 KB L3

CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-32

Advantages of Superscalar over VLIW
• Old codes still run

– Like those tools you have that came as binaries
– HW detects whether the instruction pair is a legal dual

issue pair
• If not they are run sequentially

• Little impact on code density
– Don’t need to fill all of the can’t issue here slots with

NOP’s
• Compiler issues are very similar

– Still need to do instruction scheduling anyway
– Dynamic issue hardware is there so the compiler does

not have to be too conservative

CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-33

Multiple Issue with Speculation
• Extend Tomasulo speculation algorithm to

multiple-issue scheme
– 2 challenges

• Instruction issue
• Monitor CDB for instruction completion

– In addition,
• How to handle multiple instruction commits per clock

cycle?

CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-34

Example
• Loop: LD R2, 0(R1)

DADDIU R2, R2, #1
SD R2, 0(R1)
DADDIU R1, R1, #4
BNE R2, R3, LOOP

• Assume separate integer FUs:
– for effective address calculation,
– ALU operations, and
– branch condition evaluation

• Assume up to 2 instructions of any type can commit per
clock

CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-35

Figure 3.33 & 3.34

R2

R2

R2

No Speculation

CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-36

R2

R2

R2

Speculation

Out-of-order executing In-order committing

CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-37

Comparisons
• Without speculation (Tomasulo only)

– L.D following BNE cannot start execution earlier wait
until branch outcome is determined

– Completion rate is falling behind the issue rate rapidly,
stall when a few more iterations are issued

• With speculation
– L.D following BNE can start execution early because it is

speculative
– More complex HW is required
– Completion rate is almost equal to issue rate

CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-38

Outline
• Review
• Speculation
• Speculative Tomasulo Example
• Memory Aliases
• Exceptions
• VLIW
• Advanced Techniques for Instruction Delivery and

Speculation
• Summary

CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-39

High-Performance Instruction Delivery

• For a multiple issue processor,
predicting branches well is not
enough

• Deliver a high-bandwidth instruction
stream is necessary
(e.g., 4~8 instructions/cycle)
– Increasing instruction fetch bandwidth
– Speculation (branch, value prediction)

CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-40

Increasing Instruction Fetch Bandwidth
• Predicts next

instruct address,
sends it out before
decoding
instructuction

• PC of branch sent to
BTB

• When match is found,
Predicted PC is
returned

• If branch predicted
taken, instruction
fetch continues at
Predicted PC

Branch Target Buffer (BTB)

CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-41

IF BW: Return Address Predictor
• Small buffer of return

addresses acts as a
stack

• Caches most recent
return addresses

• Call ⇒ Push a return
address
on stack

• Return ⇒ Pop an
address off stack &
predict as new PC

0%

10%

20%

30%

40%

50%

60%

70%

0 1 2 4 8 16
Return address buffer entries

M
is

p
re

d
ic

ti
o

n
 f

re
q

u
e

n
c
y

go

m88ksim

cc1

compress

xlisp

ijpeg

perl

vortex

CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-42

More Instruction Fetch Bandwidth
• Integrated branch prediction: branch predictor is

part of instruction fetch unit and is constantly
predicting branches

• Instruction prefetch: Instruction fetch units
prefetch to deliver multiple instructions per clock,
integrating it with branch prediction

• Instruction memory access and buffering:
Fetching multiple instructions per cycle:
– May require accessing multiple cache blocks (prefetch to

hide cost of crossing cache blocks)
– Provides buffering, acting as on-demand unit to provide

instructions to issue stage as needed and in quantity
needed

CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-43

Speculation: Register Renaming vs. ROB
• Alternative to ROB is a larger physical set of registers

combined with register renaming
– Extended registers replace function of both ROB and

reservation stations
• Instruction issue maps names of architectural

registers to physical register numbers in extended
register set
– On issue, allocates a new unused register for the destination

(which avoids WAW and WAR hazards)
– Speculation recovery easy because a physical register holding

an instruction destination does not become the architectural
register until the instruction commits

• Most Out-of-Order processors today use extended
registers with renaming

CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-44

Value Prediction
• Attempts to predict value produced by instruction

– E.g., Loads a value that changes infrequently
• Value prediction is useful only if it significantly

increases ILP
– Focus of research has been on loads; so-so

results, no processor uses value prediction
• Related topic is address aliasing prediction

– RAW for load and store or WAW for 2 stores
• Address alias prediction is both more stable and

simpler since need not actually predict the address
values, only whether such values conflict
– Has been used by a few processors

CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-45

Remarks
• Interest in multiple-issue because wanted to improve

performance without affecting uniprocessor programming model
• Taking advantage of ILP is conceptually simple, but design

problems are amazingly complex in practice
• Conservative in ideas, just faster clock and bigger
• Processors of last 5 years (Pentium 4, IBM Power 5, AMD

Opteron) have the same basic structure and similar sustained
issue rates (3 to 4 instructions per clock) as the 1st dynamically
scheduled, multiple-issue processors announced in 1995
– Clocks 10 to 20X faster, caches 4 to 8X bigger, 2 to 4X as

many renaming registers, and 2X as many load-store units
⇒ performance 8 to 16X

• Peak vs. delivered performance gap increasing

CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-46

In Conclusion …
• Interrupts and Exceptions either interrupt the current

instruction or happen between instructions
– Possibly large quantities of state must be saved before

interrupting
• Machines with precise exceptions provide one single

point in the program to restart execution
– All instructions before that point have completed
– No instructions after or including that point have completed

• Hardware techniques exist for precise exceptions even
in the face of out-of-order execution!
– Important enabling factor for out-of-order execution

