

5008: Computer Architecture

Chapter 2 - Instruction-Level Parallelism and Its Exploitation

CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw)

05-1

AL



## Review from Last Lecture

- Instruction Level Parallelism
  - Leverage implicit parallelism for performance:
- Loop unrolling by compiler to increase ILP
- Branch prediction to increase ILP
- Dynamic HW exploiting ILP
  - Works when can't know dependence at compile time
  - Can hide L1 cache misses
  - Code for one machine runs well on another







## Review from Last Lecture

- Reservations stations: *renaming* to larger set of registers + buffering source operands
  - Prevents registers as bottleneck
  - Avoids WAR, WAW hazards
  - Allows loop unrolling in HW
- Not limited to basic blocks
- Helps cache misses as well
- Lasting Contributions
  - Dynamic scheduling
  - Register renaming
  - Load/store disambiguation







#### Outline

- Review
- Speculation
- Speculative Tomasulo Example
- Memory Aliases
- Exceptions
- VLIW
- Advanced Techniques for Instruction Delivery and Speculation
- Summary





#### Greater ILP ?



- Essentially a data flow execution model: Operations execute as soon as their operands are available
- Greater ILP: Overcome control dependence by hardware speculating on outcome of branches and executing program as if guesses were correct
  - Speculation  $\Rightarrow$  fetch, issue, and execute instructions as if branch predictions were always correct
  - Dynamic scheduling  $\Rightarrow$  only fetches and issues instructions



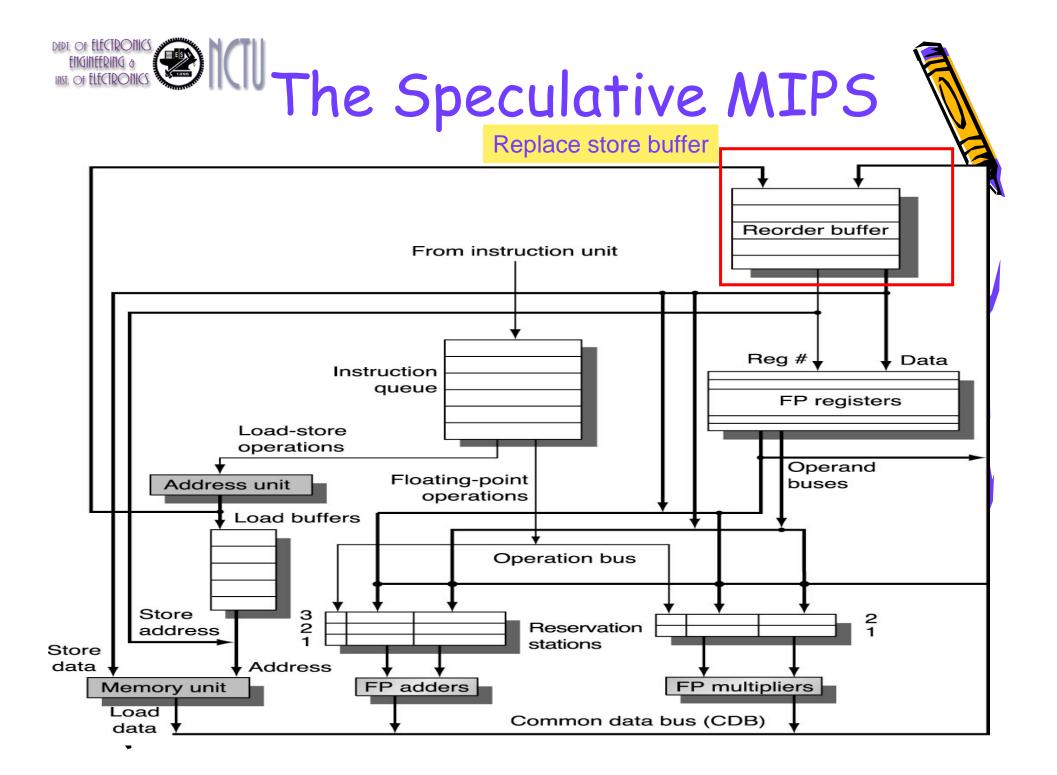


# Speculation to greater ILP

- 3 components of HW-based speculation:
- 1. Dynamic branch prediction to choose which instructions to execute
- 2. Speculation to allow execution of instructions before control dependences are resolved
  - + ability to undo effects of incorrectly speculated sequence
- 3. Dynamic scheduling to deal with scheduling of different combinations of basic blocks










#### Adding Speculation to Tomasulo

- Must separate execution from allowing instruction to finish or "commit"
- This additional step called instruction commit
- When an instruction is no longer speculative, allow it to update the register file or memory
- Requires additional set of buffers to hold results of instructions that have finished execution but have not committed
- This reorder buffer (ROB) is also used to pass results among instructions that may be speculated







#### Observations

- For an execution result, separate
  - data forwarding (thru RS) path
  - write-back (thru ROB) path
- Data forwarding path
  - still use RS to buffer operands
  - provide speculative register reads
  - provide out-of-order completion
- Register write-back path
  - use ROB to buffer results
  - when it's committed, update RF (in order)







# Reorder Buffer (ROB)

- Additional registers, just like reservation stations
  - ROB is a source of operands
  - It holds the results of instruction that have finished execution but not committed
  - Use ROB number instead of RS to indicate the source of operands when execution completes (but not committed)
  - It also uses to pass results among instructions that may be speculated
  - Each (pending) instruction occupies an ROB entry before being committed
  - Instructions in ROB are committed in order
    - Once instruction commits, the result is put into register
  - In case of misprediction, the corresponding ROB entry will be flushed





# Reorder Buffer Entry

#### Each entry in the ROB contains four fields:

- 1. Instruction type
  - a branch (has no destination result), a store (has a memory address destination), or a register operation (ALU operation or load, which has register destinations)
- 2. Destination
  - Register number (for loads and ALU operations) or memory address (for stores) where the instruction result should be written
- 3. Value
  - Value of instruction result until the instruction commits
- 4. Ready
  - Indicates that instruction has completed execution, and the value is ready









#### 4 Steps in Speculative Execution

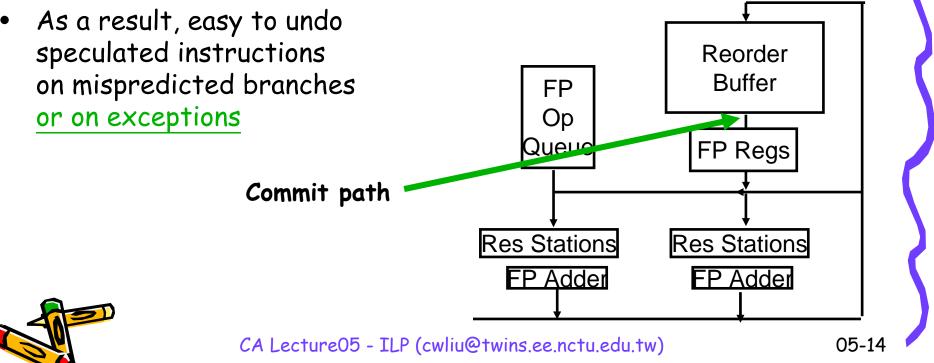
- 1. Issue (or dispatch)
  - Get instruction from the instruction queue
  - In-order issue if available RS AND ROB slot; otherwise, stall
  - Send operands to RS if they are in register or ROB
  - Update the control entries to indicate the buffers are in use
  - The ROB no. allocated for the result is sent to RS, so that the number can be used to tag the result when it is placed on CDB
- 2. Execute (or issue)
  - If not all operands are ready, monitor CDB and wait for it to be computed (check for RAW hazards)
  - When all operands are there, execution happens
- 3. Write Result
  - Result posted to ROB via the CDB
  - Waiting reservation stations can grab it as well



05-12





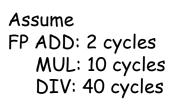

#### 4 Steps in Speculative Execution

- 4. Commit (or graduate) instruction reaches the ROB head
  - Only the head of ROB is allowed committing
  - Normal commit when instruction reaches the ROB head and its result is present in the buffer
    - Update the register and remove the instruction from ROB
  - Store Update memory and remove the instruction from ROB
  - Branch with incorrect prediction wrong speculation
    - Flush ROB and the related FP OP queue (RS)
    - Restart at the correct successor of the branch
    - Remove the instruction from ROB
  - Branch with correct prediction finish the branch
    - $\boldsymbol{\cdot}$  Remove the instruction from ROB



# ENGINEERING a Reorder Buffer Operation

- Holds instructions in FIFO order, exactly as issued
- When instructions complete, results placed into ROB
  - Supplies operands to other instruction between execution complete & commit  $\Rightarrow$  more registers like RS
  - Tag results with ROB buffer number instead of reservation station
- Instructions commit  $\Rightarrow$  values at head of ROB placed in registers








- The same example as Tomasulo without speculation.
  - L.D F6, 34(R2)
  - L.D F2, 45(R3)
  - MUL.D F0, F2, F4
  - SUB.D F8, F6, F2
  - DIV.D F10, F0, F6
  - ADD.D F6, F8, F2
- Modified status tables
  - Qj and Qk fields, and register status fields use ROB (instead of RS)
  - Add Dest field to RS (ROB to put the operation result)
- Show the status tables when MUL.D is ready to go to commit
  - At this time, only two L.D instructions have been committed







|         |                                                    |            |             |          |                |          | R          | B    | V          |       |
|---------|----------------------------------------------------|------------|-------------|----------|----------------|----------|------------|------|------------|-------|
|         |                                                    |            |             | Re       | servation stat | ions     | /          | 1-   | -          |       |
| Name    | Busy                                               | Ор         | Vj          |          | Vk             |          | Qj         | Qk   | Dest       |       |
| Load1   | no                                                 |            |             |          |                |          |            |      |            |       |
| Load2   | no                                                 |            |             |          |                |          |            |      |            |       |
| Add1    | no                                                 |            |             |          |                |          |            |      |            |       |
| Add2    | no                                                 |            |             |          |                |          |            |      |            |       |
| Add3    | no                                                 |            |             |          |                |          |            |      |            |       |
| Mult1   | no                                                 | MUL.D      | Mem[45 + Re | egs[R3]] | Regs[F4]       |          |            |      | #3         |       |
| Mult2   | yes                                                | DIV.D      |             |          | Mem[34 +       | Regs[R2  | 2]] #3     |      | #5         |       |
| 7 S     | hould                                              | be removed | from R      | ROB      | Reorder buffe  | er       |            |      |            |       |
| Entry   | Busy                                               | Instru     | ction       |          | State          | De       | estination | Valu | le         |       |
| 1       | no                                                 | L.D        | F6,34(R2)   |          | Commit         | F6       | 5          | Mer  | n[34 + Reg | gs[R2 |
| 2       | no                                                 | L.D        | F2,45(R3)   |          | Commit         | F2       | 2          | Mer  | n[45 + Reg | gs[R3 |
| 3       | yes                                                | MUL.D      | F0,F2,F4    |          | Write result   | FO       | )          | #2 > | Regs[F4]   |       |
| 4       | yes                                                | SUB.D      | F8,F6,F2    |          | Write result   | F8       | 3          | #1 - | - #2       | 526   |
| 5       | yes                                                | DIV.D      | F10,F0,F6   |          | Execute        | F1       | 0          |      |            |       |
| 6       | yes                                                | ADD.D      | F6,F8,F2    |          | Write result   | F6       | )          | #4 + | - #2       |       |
|         | In-or                                              | rder comm  | īt          |          | FP register    | r status |            |      | 40 14      |       |
| Field   |                                                    | F0 F1      | F2          | F3       | F4             | F5       | F6         | F7   | F8         | F     |
| Reorder | # (ROB)                                            | 3          |             |          |                |          | 6          |      | 4          | 5     |
|         | and all and all all all all all all all all all al |            |             | 17.2     |                |          | yes        |      | yes        | ye    |







- Consider the case if MUL.D causes an interrupt...
- Tomasulo without speculation
  - SUB.D and ADD.D have completed (clock cycle 16, <u>slide</u> 04-108)
- Tomasulo with speculation
  - No instruction after the earliest uncompleted instruction (MUL.D) is allowed to complete
  - In-order commit
- Implication ROB with in-order instruction commit provides precise exceptions
  - Precise exceptions exceptions are handled in the instruction order





### Tomasulo's + ROB



- Performance is more sensitive to branch-prediction
  - Impact of a mis-prediction will be higher
- Precise exception
  - Handled by not recognizing the exception until it is ready to commit
  - If a speculation instruction raises an exception, the exception is recorded in ROB
    - Mis-prediction branch  $\rightarrow$  exception are flushed as well
    - If the instruction reaches the ROB head  $\rightarrow$  take the exception
- Tomasulo's + ROB provides precise exceptions !!!





# 5

#### Remark: Avoiding Memory Hazards

- WAW and WAR hazards through memory are eliminated with speculation because actual updating of memory occurs in order, when a store is at head of the ROB, and hence, no earlier loads or stores can still be pending
- RAW hazards through memory are maintained by two restrictions:
  - not allowing a load to initiate the second step of its execution if any active ROB entry occupied by a store has a Destination field that matches the value of the A field of the load, and
  - 2. maintaining the program order for the computation of an effective address of a load with respect to all earlier stores.
- these restrictions ensure that any load that accesses a memory location written to by an earlier store cannot perform the memory access until the store has written the data







#### Remark: Exceptions and Interrupts

- IBM 360/91 invented "imprecise interrupts"
  - Computer stopped at this PC; its likely close to this address
  - Not so popular with programmers
  - Also, what about Virtual Memory? (Not in IBM 360)
- Technique for both precise interrupts/exceptions and speculation: in-order completion and in-order commit
  - If we speculate and are wrong, need to back up and restart execution to point at which we predicted incorrectly
  - This is exactly same as need to do with precise exceptions
- Exceptions are handled by not recognizing the exception until instruction that caused it is ready to commit in ROB
  - If a speculated instruction raises an exception, the exception is recorded in the ROB
  - This is why reorder buffers in all new processors





#### Outline

- Review
- Speculation
- Speculative Tomasulo Example
- Memory Aliases
- Exceptions
- VLIW
- Advanced Techniques for Instruction Delivery and Speculation
- Summary







# Getting CPI below 1

- CPI  $\geq$  1 if issue only 1 instruction every clock cycle
- Multiple-issue processors come in 3 flavors:
  - 1. statically-scheduled superscalar processors,
  - 2. dynamically-scheduled superscalar processors, and
  - 3. VLIW (very long instruction word) processors
- 2 types of superscalar processors issue varying numbers of instructions per clock
  - use in-order execution if they are statically scheduled, or
  - out-of-order execution if they are dynamically scheduled
- VLIW processors, in contrast, issue a fixed number of instructions formatted either as one large instruction or as a fixed instruction packet with the parallelism among instructions explicitly indicated by the instruction (Intel/HP Itanium)



#### Multiple Issue with Speculation

- To maintain throughput of greater than one instructions per cycle, we must handle multiple instruction commits per clock
- Extend Tomasulo speculation algorithm to multiple-issue scheme
  - 2 challenges
    - Instruction issue
    - Monitor CDB for instruction completion
  - In addition,
    - How to handle multiple instruction commits per clock cycle?







#### VLIW: Very Large Instruction Word

- Each "instruction" has explicit coding for multiple operations
  - In IA-64, grouping called a "packet"
  - In Transmeta, grouping called a "molecule" (with "atoms" as ops)
- Tradeoff instruction space for simple decoding
  - The long instruction word has room for many operations
  - By definition, all the operations the compiler puts in the long instruction word are independent => execute in parallel
  - E.g., 2 integer operations, 2 FP ops, 2 Memory refs, 1 branch
    - 16 to 24 bits per field => 7\*16 or 112 bits to 7\*24 or 168 bits wide
  - Need compiling technique that schedules across several branches





#### Basic VLIW



- A VLIW uses multiple, independent functional units
- A VLIW packages multiple independent operations into one very long instruction
  - The burden for choosing and packaging independent operations falls on compiler
  - HW in a superscalar makes these issue decisions is unnecessary
- VLIW depends on enough parallelism for keeping FUs busy
  - Loop unrolling and then code scheduling
  - Compiler may need to do local scheduling and global scheduling
- Here we consider a VLIW processor might have instructions that contain 5 operations, including 1 integer (or branch), 2 FP, and 2 memory references
  - Depend on the available FUs and frequency of operation







| 1 Loop: | L.D    | F0,0(R1)                |   |      |                        |
|---------|--------|-------------------------|---|------|------------------------|
| 2       | L.D    | F6,-8(R1)               |   |      | L.D to ADD.D: 1 Cycle  |
| 3       | L.D    | F10,-16(R1)             |   |      | ADD.D to S.D: 2 Cycles |
| 4       | L.D    | F14,-24(R1)             |   |      |                        |
| 5       | ADD.D  | F4,F0,F2                |   |      |                        |
| 6       | ADD.D  | F8,F6,F2                |   |      |                        |
| 7       | ADD.D  | F12,F10,F2              |   |      |                        |
| 8       | ADD.D  | F16,F14,F2              |   |      |                        |
| 9       | S.D    | 0(R1),F4                |   |      |                        |
| 10      | S.D    | -8(R1),F8               |   |      |                        |
| 11      | S.D    | -16(R1),F12             |   |      |                        |
| 12      | DSUBUI | R1,R1,#32               |   |      |                        |
| 13      | BNEZ   | R1,LOOP                 |   |      |                        |
| 14      | S.D    | <mark>8</mark> (R1),F16 | ; | 8-32 | = -24                  |



#### 14 clock cycles, or 3.5 per iteration

CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw)



05-26





### Loop Unrolling in VLIW

| Memory<br>reference 1 | Memory<br>reference 2                                                                                          | FP<br>operation 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FP<br>operation 2               | Integer<br>operation/branch |
|-----------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------|
| L.D F0,0(R1)          | L.D F6,-8(R1)                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the second second second second |                             |
| L.D F10,-16(R1)       | L.D F14,-24(R1)                                                                                                | and a state of the | a montant an                    |                             |
| L.D F18,-32(R1)       | L.D F22,-40(R1)                                                                                                | ADD.D F4,F0,F2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ADD.D F8,F6,F2                  |                             |
| L.D F26,-48(R1)       |                                                                                                                | ADD.D F12,F10,F2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ADD.D F16,F14,F2                |                             |
|                       |                                                                                                                | ADD.D F20,F18,F2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ADD.D F24,F22,F2                |                             |
| S.D F4,0(R1)          | S.D F8,-8(R1)                                                                                                  | ADD.D F28,F26,F2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                             |
| S.D F12,-16(R1)       | S.D F16,-24(R1)                                                                                                | the former at the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | no de Gla                       | DADDUI R1,R1,#-56           |
| S.D F20,24(R1)        | S.D F24,16(R1)                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | in second second                |                             |
| S.D F28,8(R1)         | and a second | a datum anagana ng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 | BNE R1,R2,Loop              |

Unrolled 7 times to avoid delays 7 results in 9 clocks, or 1.29 clocks per iteration 23 ops in 9 clock, average 2.5 ops per clock, 50% efficiency Note: Need more registers in VLIW





#### VLIW Problems - Technical

- Increase in code size
  - Ambitious loop unrolling
  - Whenever instructions are not full, the unused FUs translate to waste bits in the instruction encoding
    - An instruction may need to be left completely empty if no operation can be scheduled
    - Clever encoding or compress/decompress







# VLIW Problems - Logistical

- Operated in lock-step; no hazard detection HW
  - Early VLIW all FUs must be kept synchronized
    - A stall in any FU pipeline may cause the entire processor to stall
    - Compiler might prediction function units, but caches hard to predict
  - Recent VLIW FUs operate more independently
    - Compiler is used to avoid hazards at issue time
    - Hardware checks allow for unsynchronized execution once instructions are issued.
    - Hardware complexity







# VLIW Problems - Logistical

- Binary code compatibility
  - Pure VLIW => different numbers of functional units and unit latencies require different versions of the code
  - Need migration between successive implementations, or between implementations 

     recompliation
  - Solution  $\rightarrow$  Object-code translation or emulation







Intel/HP IA-64 "Explicitly Parallel Instruction Computer (EPIC)"

- <u>IA-64</u>: instruction set architecture
- 128 64-bit integer regs + 128 82-bit floating point regs
  - Not separate register files per functional unit as in old VLIW
- Hardware checks dependencies (interlocks => binary compatibility over time)
- Predicated execution (select 1 out of 64 1-bit flags)
   => 40% fewer mispredictions?
- <u>Itanium</u><sup>™</sup> was first implementation (2001)
  - Highly parallel and deeply pipelined hardware at 800Mhz
  - 6-wide, 10-stage pipeline at 800Mhz on 0.18  $\mu$  process
- <u>Itanium 2™</u> is name of 2nd implementation (2005)
  - 6-wide, 8-stage pipeline at 1666Mhz on 0.13  $\mu$  process
  - Caches: 32 KB I, 32 KB D, 128 KB L2I, 128 KB L2D, 9216 KB L3







#### Advantages of Superscalar over VLIW

- Old codes still run
  - Like those tools you have that came as binaries
  - HW detects whether the instruction pair is a legal dual issue pair
    - If not they are run sequentially
- Little impact on code density
  - Don't need to fill all of the can't issue here slots with NOP's
- Compiler issues are very similar
  - Still need to do instruction scheduling anyway
  - Dynamic issue hardware is there so the compiler does not have to be too conservative





#### Multiple Issue with Speculation

- Extend Tomasulo speculation algorithm to multiple-issue scheme
  - 2 challenges
    - Instruction issue
    - Monitor CDB for instruction completion
  - In addition,
    - How to handle multiple instruction commits per clock cycle?









#### Example

| • | Loop: | LD     | R2, 0(R1)    |
|---|-------|--------|--------------|
|   |       | DADDIU | R2, R2, #1   |
|   |       | SD     | R2, 0(R1)    |
|   |       | DADDIU | R1, R1, #4   |
|   |       | BNE    | R2, R3, LOOP |
|   |       |        | , , , = =    |

- Assume separate integer FUs:
  - for effective address calculation,
  - ALU operations, and
  - branch condition evaluation
- Assume up to 2 instructions of any type can commit per clock





| N<br>Iteration<br>number | o Speculation |              | lssues at<br>clock cycle<br>number | Executes at<br>clock cycle<br>number | Memory<br>access at<br>clock cycle<br>number | Write CDB at<br>clock cycle<br>number | Comment          |
|--------------------------|---------------|--------------|------------------------------------|--------------------------------------|----------------------------------------------|---------------------------------------|------------------|
| 1                        | LD            | R2,0(R1)     | 1                                  | 2                                    | 3                                            | 4                                     | First issue      |
| 1                        | DADDIU        | R2,R2,#1     | 1                                  | 5                                    |                                              | 6                                     | Wait for LW      |
| 1                        | SD            | R2,0(R1)     | 2                                  | 3                                    | 7                                            | 0111                                  | Wait for DADDIU  |
| 1                        | DADDIU        | R1,R1,#4     | 2                                  | 3                                    |                                              | 4                                     | Execute directly |
| 1                        | BNE           | R2,R3,L00P   | 3                                  | 7                                    |                                              |                                       | Wait for DADDIU  |
| 2                        | LD            | R2,0(R1)     | 4                                  | 8                                    | 9                                            | 10                                    | Wait for BNE     |
| 2                        | DADDIU        | R2,R2,#1     | 4                                  | 11                                   |                                              | 12                                    | Wait for LW      |
| 2                        | SD            | R2,0(R1)     | 5                                  | 9                                    | 13                                           |                                       | Wait for DADDIU  |
| 2                        | DADDIU        | R1,R1,#4     | 5                                  | 8                                    |                                              | 9                                     | Wait for BNE     |
| 2                        | BNE           | R2, R3, LOOP | 6                                  | 13                                   |                                              |                                       | Wait for DADDIU  |
| 3                        | LD            | R2,0(R1)     | 7                                  | 14                                   | 15                                           | 16                                    | Wait for BNE     |
| 3                        | DADDIU        | R2,R2,#1     | 7                                  | 17                                   |                                              | 18                                    | Wait for LW      |
| 3                        | SD            | R2,0(R1)     | 8                                  | 15                                   | 19                                           | 10                                    | Wait for DADDIU  |
| 3                        | DADDIU        | R1,R1,#4     | 8                                  | 14                                   |                                              | 15                                    | Wait for BNE     |
| 3                        | BNZ           | R2,R3,L00P   | 9                                  | 19                                   |                                              | 10                                    | Wait for DADDIU  |

| na na serie de la comencia de la com<br>Esta de la comencia de |                                                                                                                              | lssues<br>at clock<br>number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Executes<br>at clock<br>number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Read access<br>at clock<br>number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Write<br>CDB at<br>clock<br>number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Commits<br>at clock<br>number                                                                                                                                                                                                                                                                                                                                                     | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LD                                                                                                                                                                                                                                  | R2,0(R1)                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                                                                                                                                                                                                                                                                                 | First issue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                     |                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7                                                                                                                                                                                                                                                                                                                                                                                 | Wait for LW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                     |                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7                                                                                                                                                                                                                                                                                                                                                                                 | Wait for DADDIU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                     |                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8                                                                                                                                                                                                                                                                                                                                                                                 | Commit in order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                     |                                                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                                                                                                                                                                                                                                                                                                                 | Wait for DADDIU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                     | _                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9                                                                                                                                                                                                                                                                                                                                                                                 | No execute delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                     |                                                                                                                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                                                                                                                                                                                                                                                                                                                                                | Wait for LW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                     |                                                                                                                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                                                                                                                                                                                                                                                                                                                                                                                | Wait for DADDIU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| - 10 Carlos                                                                                                                                                                                                                         |                                                                                                                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11                                                                                                                                                                                                                                                                                                                                                                                | Commit in order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                     |                                                                                                                              | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 11                                                                                                                                                                                                                                                                                                                                                                              | Wait for DADDIU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                     |                                                                                                                              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12                                                                                                                                                                                                                                                                                                                                                                                | Earliest possible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                     | a sector contracts                                                                                                           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13                                                                                                                                                                                                                                                                                                                                                                                | Wait for LW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                     |                                                                                                                              | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13                                                                                                                                                                                                                                                                                                                                                                                | Wait for DADDIU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                     |                                                                                                                              | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14                                                                                                                                                                                                                                                                                                                                                                                | Executes earlier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| BNE                                                                                                                                                                                                                                 | R2,R3,L00P                                                                                                                   | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14                                                                                                                                                                                                                                                                                                                                                                                | Wait for DADDIU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                     | Instruct<br>LD<br>DADDIU<br>SD<br>DADDIU<br>BNE<br>LD<br>DADDIU<br>SD<br>DADDIU<br>BNE<br>LD<br>DADDIU<br>SD<br>DADDIU<br>SD | DADDIU       R2,R2,#1         SD       R2,O(R1)         DADDIU       R1,R1,#4         BNE       R2,R3,L00P         LD       R2,0(R1)         DADDIU       R2,R2,#1         SD       R2,0(R1)         DADDIU       R1,R1,#4         BNE       R2,0(R1)         DADDIU       R1,R1,#4         BNE       R2,R3,L00P         LD       R2,0(R1)         DADDIU       R1,R1,#4         BNE       R2,0(R1)         DADDIU       R2,0(R1) | Issues<br>at clock<br>number           LD         R2,0(R1)         1           DADDIU         R2,R2,#1         1           SD         R2,0(R1)         2           DADDIU         R1,R1,#4         2           BNE         R2,R3,L00P         3           LD         R2,0(R1)         4           DADDIU         R2,R2,#1         4           SD         R2,0(R1)         5           DADDIU         R1,R1,#4         5           BNE         R2,0(R1)         5           DADDIU         R1,R1,#4         5           BNE         R2,R3,L00P         6           LD         R2,0(R1)         7           DADDIU         R1,R1,#4         5           BNE         R2,0(R1)         7           DADDIU         R2,0(R1)         8           DADDIU         R2,0(R1)         8           DADDIU         R1,R1,#4         8 | Issues<br>at clock<br>number         Executes<br>at clock<br>number           LD         R2,0(R1)         1         2           DADDIU         R2,R2,#1         1         5           SD         R2,0(R1)         2         3           DADDIU         R2,R2,#1         1         5           SD         R2,0(R1)         2         3           DADDIU         R1,R1,#4         2         3           BNE         R2,R3,L00P         3         7           LD         R2,0(R1)         4         5           DADDIU         R2,R3,L00P         3         7           LD         R2,0(R1)         5         6           DADDIU         R2,R3,L00P         6         10           LD         R2,0(R1)         7         8           DADDIU         R1,R1,#4         5         6           BNE         R2,R3,L00P         6         10           LD         R2,0(R1)         7         8           DADDIU         R2,0(R1)         7         11           SD         R2,0(R1)         8         9           DADDIU         R1,R1,#4         8         9 | Issues<br>at clock<br>number         Executes<br>at clock<br>number         Read access<br>at clock<br>number           LD         R2,0(R1)         1         2         3           DADDIU         R2,R2,#1         1         5         5           SD         R2,0(R1)         2         3         5           DADDIU         R2,R2,#1         1         5         5           SD         R2,0(R1)         2         3         5           DADDIU         R1,R1,#4         2         3         5           DADDIU         R1,R1,#4         2         3         5           DADDIU         R2,0(R1)         4         5         6           DADDIU         R2,0(R1)         5         6         5           DADDIU         R2,R3,L00P         6         10         5           LD         R2,0(R1)         7         8         9           DADDIU         R2,Q(R1)         7         11         5           SD         R2,0(R1)         8         9         5           DADDIU         R1,R1,#4         8         9         5 | Issues<br>at clock<br>numberIssues<br>at clock<br>numberRead access<br>at clock<br>numberCDB at<br>clock<br>numberLDR2,0(R1)1234DADDIUR2,R2,#1156SDR2,0(R1)234DADDIUR1,R1,#4234BNER2,R3,L00P374LDR2,0(R1)4567DADDIUR2,R2,#1489SDR2,0(R1)567DADDIUR1,R1,#4567DADDIUR2,R2,#1489SDR2,0(R1)789DADDIUR2,R3,L00P61010LDR2,0(R1)78910DADDIUR2,R2,#171112SDR2,0(R1)8910DADDIUR1,R1,#48910 | Issues<br>at clock<br>number         Executes<br>at clock<br>number         Read access<br>at clock<br>number         CDB at<br>clock<br>number         Commits<br>at clock<br>number           LD         R2,0(R1)         1         2         3         4         5           DADDIU         R2,R2,#1         1         5         6         7           SD         R2,0(R1)         2         3         4         8           BNE         R2,R3,L00P         3         7         8           LD         R2,0(R1)         4         5         6         7           DADDIU         R1,R1,#4         2         3         4         8           BNE         R2,R3,L00P         3         7         8         9         10           DADDIU         R2,R2,#1         4         8         9         10         1           SD         R2,0(R1)         5         6         7         11           DADDIU         R1,R1,#4         5         6         7         11           LD         R2,0(R1)         7         8         9         10         12           DADDIU         R2,R2,#1         7         11         12         13         3 |







- Without speculation (Tomasulo only)
  - L.D following BNE cannot start execution earlier → wait until branch outcome is determined
  - Completion rate is falling behind the issue rate rapidly, stall when a few more iterations are issued
- With speculation
  - L.D following BNE can start execution early because it is speculative
  - More complex HW is required
  - Completion rate is almost equal to issue rate





#### Outline

2

- Review
- Speculation
- Speculative Tomasulo Example
- Memory Aliases
- Exceptions
- VLIW
- Advanced Techniques for Instruction Delivery and Speculation
- Summary

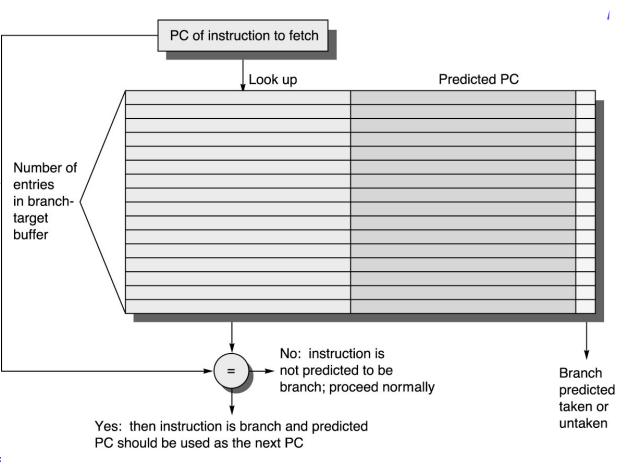








#### High-Performance Instruction Delivery


- For a multiple issue processor, predicting branches well is not enough
- Deliver a high-bandwidth instruction stream is necessary (e.g., 4~8 instructions/cycle)
  - Increasing instruction fetch bandwidth
  - Speculation (branch, value prediction)





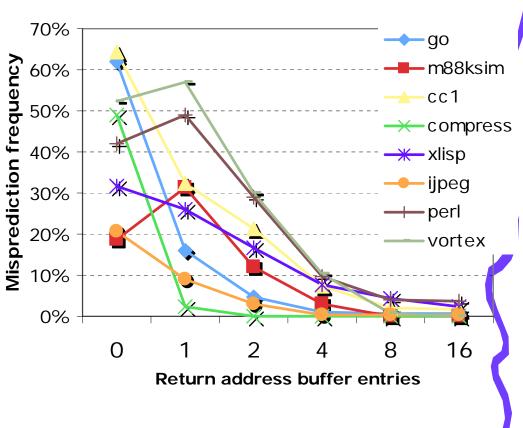
#### Increasing Instruction Fetch Bandwidth

- Predicts next instruct address, sends it out *before* decoding instructuction
- PC of branch sent to BTB
- When match is found Predicted PC is returned
- If branch predicted taken, instruction fetch continues at Predicted PC



**Branch Target Buffer (BTB)** 




CA Lecture





#### IF BW: Return Address Predictor

- Small buffer of return addresses acts as a stack
- Caches most recent return addresses
- Call ⇒ Push a return address on stack
- Return ⇒ Pop an address off stack & predict as new PC





05-41



#### More Instruction Fetch Bandwidth

- Integrated branch prediction: branch predictor is part of instruction fetch unit and is constantly predicting branches
- Instruction prefetch: Instruction fetch units prefetch to deliver multiple instructions per clock, integrating it with branch prediction
- Instruction memory access and buffering: Fetching multiple instructions per cycle:
  - May require accessing multiple cache blocks (prefetch to hide cost of crossing cache blocks)
  - Provides buffering, acting as on-demand unit to provide instructions to issue stage as needed and in quantity needed





#### Speculation: Register Renaming vs. ROB

- Alternative to ROB is a larger physical set of registers combined with register renaming
  - Extended registers replace function of both ROB and reservation stations
- Instruction issue maps names of architectural registers to physical register numbers in extended register set
  - On issue, allocates a new unused register for the destination (which avoids WAW and WAR hazards)
  - Speculation recovery easy because a physical register holding an instruction destination does not become the architectural register until the instruction commits
- Most Out-of-Order processors today use extended
   gisters with renaming

CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw)



# Value Prediction

- Attempts to predict value produced by instruction
   E.g., Loads a value that changes infrequently
- Value prediction is useful only if it significantly increases ILP
  - Focus of research has been on loads; so-so results, no processor uses value prediction
- Related topic is *address aliasing prediction* 
  - RAW for load and store or WAW for 2 stores
- Address alias prediction is both more stable and simpler since need not actually predict the address values, only whether such values conflict
  - Has been used by a few processors







- Interest in multiple-issue because wanted to improve performance without affecting uniprocessor programming model
- Taking advantage of ILP is conceptually simple, but design problems are amazingly complex in practice
- Conservative in ideas, just faster clock and bigger
- Processors of last 5 years (Pentium 4, IBM Power 5, AMD Opteron) have the same basic structure and similar sustained issue rates (3 to 4 instructions per clock) as the 1st dynamically scheduled, multiple-issue processors announced in 1995
  - Clocks 10 to 20X faster, caches 4 to 8X bigger, 2 to 4X as many renaming registers, and 2X as many load-store units ⇒ performance 8 to 16X
- Peak vs. delivered performance gap increasing





In Conclusion ...

- Interrupts and Exceptions either interrupt the current instruction or happen between instructions
  - Possibly large quantities of state must be saved before interrupting
- Machines with *precise exceptions* provide one single point in the program to restart execution
  - All instructions before that point have completed
  - No instructions after or including that point have completed
- Hardware techniques exist for precise exceptions even in the face of out-of-order execution!
  - Important enabling factor for out-of-order execution

