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Review from Last Lecture
• Instruction Level Parallelism 

– Leverage implicit parallelism for performance:
• Loop unrolling by compiler to increase ILP
• Branch prediction to increase ILP
• Dynamic HW exploiting ILP

– Works when can’t know dependence at compile 
time

– Can hide L1 cache misses
– Code for one machine runs well on another
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Review from Last Lecture
• Reservations stations: renaming to larger set of 

registers + buffering source operands
– Prevents registers as bottleneck
– Avoids WAR, WAW hazards
– Allows loop unrolling in HW

• Not limited to basic blocks 
• Helps cache misses as well
• Lasting Contributions

– Dynamic scheduling
– Register renaming
– Load/store disambiguation
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Outline
• Review
• Speculation
• Speculative Tomasulo Example
• Memory Aliases
• Exceptions
• VLIW
• Advanced Techniques for Instruction Delivery and 

Speculation
• Summary
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Greater ILP ?
• Essentially a data flow execution model: 

Operations execute as soon as their operands are 
available

• Greater ILP: Overcome control dependence by 
hardware speculating on outcome of branches 
and executing program as if guesses were 
correct
– Speculation ⇒ fetch, issue, and execute instructions as 

if branch predictions were always correct 
– Dynamic scheduling ⇒ only fetches and issues

instructions
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Speculation to greater ILP
3 components of HW-based speculation:
1. Dynamic branch prediction to choose which 

instructions to execute 
2. Speculation to allow execution of instructions 

before control dependences are resolved 
+ ability to undo effects of incorrectly 

speculated sequence 
3. Dynamic scheduling to deal with scheduling of 

different combinations of basic blocks 
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Adding Speculation to Tomasulo
• Must separate execution from allowing instruction 

to finish or “commit”
• This additional step called instruction commit
• When an instruction is no longer speculative, allow 

it to update the register file or memory 
• Requires additional set of buffers to hold results 

of instructions that have finished execution but 
have not committed

• This reorder buffer (ROB) is also used to pass 
results among instructions that may be speculated



CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-8

The Speculative MIPS
Replace store buffer
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Observations
• For an execution result, separate

– data forwarding (thru RS) path
– write-back (thru ROB) path

• Data forwarding path
– still use RS to buffer operands
– provide speculative register reads
– provide out-of-order completion 

• Register write-back path
– use ROB to buffer results
– when it’s committed, update RF (in order)
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Reorder Buffer (ROB)
• Additional registers, just like reservation stations

– ROB is a source of operands
– It holds the results of instruction that have finished 

execution but not committed
– Use ROB number instead of RS to indicate the source of 

operands when execution completes (but not committed)
– It also uses to pass results among instructions that may 

be speculated
– Each (pending) instruction occupies an ROB entry before 

being committed 
– Instructions in ROB are committed in order

• Once instruction commits, the result is put into register
– In case of misprediction, the corresponding ROB entry 

will be flushed
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Reorder Buffer Entry
Each entry in the ROB contains four fields:
1. Instruction type 

• a branch (has no destination result), a store (has a memory 
address destination), or a register operation (ALU operation 
or load, which has register destinations)

2. Destination
• Register number (for loads and ALU operations) or 

memory address (for stores) 
where the instruction result should be written

3. Value
• Value of instruction result until the instruction commits

4. Ready
• Indicates that instruction has completed execution, and the 

value is ready
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4 Steps in Speculative Execution
1. Issue (or dispatch)

– Get instruction from the instruction queue
– In-order issue if available RS AND ROB slot; otherwise, stall
– Send operands to RS if they are in register or ROB
– Update the control entries to indicate the buffers are in use
– The ROB no. allocated for the result is sent to RS, so that the 

number can be used to tag the result when it is placed on CDB
2. Execute (or issue)

– If not all operands are ready, monitor CDB and wait for it to 
be computed (check for RAW hazards)

– When all operands are there, execution happens
3. Write Result

– Result posted to ROB via the CDB
– Waiting reservation stations can grab it as well
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4 Steps in Speculative Execution
4. Commit (or graduate) – instruction reaches the 

ROB head
– Only the head of ROB is allowed committing
– Normal commit – when instruction reaches the ROB head 

and its result is present in the buffer
• Update the register and remove the instruction from ROB

– Store – Update memory and remove the instruction from 
ROB

– Branch with incorrect prediction – wrong speculation
• Flush ROB and the related FP OP queue (RS)
• Restart at the correct successor of the branch
• Remove the instruction from ROB

– Branch with correct prediction – finish the branch
• Remove the instruction from ROB
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Reorder Buffer Operation
• Holds instructions in FIFO order, exactly as issued
• When instructions complete, results placed into ROB

– Supplies operands to other instruction between execution 
complete & commit ⇒ more registers like RS

– Tag results with ROB buffer number instead of reservation station
• Instructions commit ⇒values at head of ROB placed in registers
• As a result, easy to undo 

speculated instructions 
on mispredicted branches 
or on exceptions

Reorder
BufferFP

Op
Queue

FP Adder FP Adder
Res Stations Res Stations

FP Regs

Commit path
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Example
• The same example as Tomasulo without speculation. 

– L.D F6, 34(R2)
– L.D F2, 45(R3)
– MUL.D F0, F2, F4
– SUB.D F8, F6, F2
– DIV.D F10, F0, F6
– ADD.D F6, F8, F2

• Modified status tables
– Qj and Qk fields, and register status fields use ROB        

(instead of RS)
– Add Dest field to RS (ROB to put the operation result)

• Show the status tables when MUL.D is ready to go to commit
– At this time, only two L.D instructions have been committed

Assume
FP ADD: 2 cycles

MUL: 10 cycles
DIV: 40 cycles
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Figure 3.30
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Comparisons 
• Consider the case if MUL.D causes an interrupt…
• Tomasulo without speculation

– SUB.D and ADD.D have completed (clock cycle 16, slide 
04-108)

• Tomasulo with speculation
– No instruction after the earliest uncompleted 

instruction (MUL.D) is allowed to complete
– In-order commit

• Implication – ROB with in-order instruction 
commit provides precise exceptions
– Precise exceptions – exceptions are handled in the 

instruction order
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Tomasulo’s + ROB
• Performance is more sensitive to branch-prediction

– Impact of a mis-prediction will be higher

• Precise exception
– Handled by not recognizing the exception until it is ready 

to commit
– If a speculation instruction raises an exception, the 

exception is recorded in ROB
• Mis-prediction branch exception are flushed as well
• If the instruction reaches the ROB head take the 

exception
• Tomasulo’s + ROB provides precise exceptions !!!
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Remark: Avoiding Memory Hazards
• WAW and WAR hazards through memory are eliminated 

with speculation because actual updating of memory occurs 
in order, when a store is at head of the ROB, and hence, no 
earlier loads or stores can still be pending 

• RAW hazards through memory are maintained by two 
restrictions: 
1. not allowing a load to initiate the second step of its execution

if any active ROB entry occupied by a store has a Destination 
field that matches the value of the A field of the load, and 

2. maintaining the program order for the computation of an 
effective address of a load with respect to all earlier stores.

• these restrictions ensure that any load that accesses a 
memory location written to by an earlier store cannot 
perform the memory access until the store has written the 
data
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Remark: Exceptions and Interrupts
• IBM 360/91 invented “imprecise interrupts”

– Computer stopped at this PC; its likely close to this address
– Not so popular with programmers
– Also, what about Virtual Memory? (Not in IBM 360)

• Technique for both precise interrupts/exceptions and 
speculation: in-order completion and in-order commit
– If we speculate and are wrong, need to back up and restart 

execution to point at which we predicted incorrectly
– This is exactly same as need to do with precise exceptions

• Exceptions are handled by not recognizing the exception 
until instruction that caused it is ready to commit in ROB
– If a speculated instruction raises an exception, the exception 

is recorded in the ROB
– This is why reorder buffers in all new processors
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Outline
• Review
• Speculation
• Speculative Tomasulo Example
• Memory Aliases
• Exceptions
• VLIW
• Advanced Techniques for Instruction Delivery and 

Speculation
• Summary
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Getting CPI below 1
• CPI ≥ 1 if issue only 1 instruction every clock cycle 
• Multiple-issue processors come in 3 flavors: 

1. statically-scheduled superscalar processors,
2. dynamically-scheduled superscalar processors, and 
3. VLIW (very long instruction word) processors

• 2 types of superscalar processors issue varying numbers of 
instructions per clock 
– use in-order execution if they are statically scheduled, or 
– out-of-order execution if they are dynamically scheduled 

• VLIW processors, in contrast, issue a fixed number of 
instructions formatted either as one large instruction or as 
a fixed instruction packet with the parallelism among 
instructions explicitly indicated by the instruction (Intel/HP 
Itanium)



CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-23

Multiple Issue with Speculation
• To maintain throughput of greater than one 

instructions per cycle, we must handle multiple 
instruction commits per clock

• Extend Tomasulo speculation algorithm to 
multiple-issue scheme
– 2 challenges

• Instruction issue
• Monitor CDB for instruction completion

– In addition,
• How to handle multiple instruction commits per clock 

cycle?
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VLIW: Very Large Instruction Word
• Each “instruction” has explicit coding for multiple 

operations
– In IA-64, grouping called a “packet”
– In Transmeta, grouping called a “molecule” (with “atoms” as ops)

• Tradeoff instruction space for simple decoding
– The long instruction word has room for many operations
– By definition, all the operations the compiler puts in the long 

instruction word are independent => execute in parallel
– E.g., 2 integer operations, 2 FP ops, 2 Memory refs, 1 branch

• 16 to 24 bits per field => 7*16 or 112 bits to 7*24 or 168 bits 
wide

– Need compiling technique that schedules across several 
branches
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Basic VLIW
• A VLIW uses multiple, independent functional units
• A VLIW packages multiple independent operations into one very long 

instruction
– The burden for choosing and packaging independent operations falls on 

compiler
– HW in a superscalar makes these issue decisions is unnecessary

• VLIW depends on enough parallelism for keeping FUs busy
– Loop unrolling and then code scheduling
– Compiler may need to do local scheduling and global scheduling

• Here we consider a VLIW processor might have instructions that 
contain 5 operations, including 1 integer (or branch), 2 FP, and 2 
memory references
– Depend on the available FUs and frequency of operation
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Recall: Unrolled Loop that 
Minimizes Stalls for Scalar
1 Loop: L.D F0,0(R1)
2 L.D F6,-8(R1)
3 L.D F10,-16(R1)
4 L.D F14,-24(R1)
5 ADD.D F4,F0,F2
6 ADD.D F8,F6,F2
7 ADD.D F12,F10,F2
8 ADD.D F16,F14,F2
9 S.D 0(R1),F4
10 S.D -8(R1),F8
11 S.D -16(R1),F12
12 DSUBUI R1,R1,#32
13 BNEZ R1,LOOP
14 S.D 8(R1),F16 ; 8-32 = -24

14 clock cycles, or 3.5 per iteration

L.D to ADD.D: 1 Cycle
ADD.D to S.D: 2 Cycles
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Loop Unrolling in VLIW

Unrolled 7 times to avoid delays
7 results in 9 clocks, or 1.29 clocks per iteration 
23 ops in 9 clock, average 2.5 ops per clock, 50% efficiency 
Note: Need more registers in VLIW
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VLIW Problems – Technical
• Increase in code size

– Ambitious loop unrolling
– Whenever instructions are not full, the unused FUs

translate to waste bits in the instruction encoding
• An instruction may need to be left completely empty 

if no operation can be scheduled
• Clever encoding or compress/decompress
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VLIW Problems – Logistical
• Operated in lock-step; no hazard 

detection HW
– Early VLIW – all FUs must be kept synchronized

• A stall in any FU pipeline may cause the entire processor to 
stall

• Compiler might prediction function units, but caches hard 
to predict

– Recent VLIW – FUs operate more independently
• Compiler is used to avoid hazards at issue time
• Hardware checks allow for unsynchronized execution once 

instructions are issued.
• Hardware complexity
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VLIW Problems – Logistical
• Binary code compatibility 

– Pure VLIW => different numbers of functional units and 
unit latencies require different versions of the code

– Need migration between successive implementations, or 
between implementations recompliation

– Solution Object-code translation or emulation
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Intel/HP IA-64 “Explicitly Parallel 
Instruction Computer (EPIC)”

• IA-64: instruction set architecture
• 128 64-bit integer regs + 128 82-bit floating point regs

– Not separate register files per functional unit as in old VLIW
• Hardware checks dependencies 

(interlocks => binary compatibility over time)
• Predicated execution (select 1 out of 64 1-bit flags) 

=> 40% fewer mispredictions?
• Itanium™ was first implementation (2001)

– Highly parallel and deeply pipelined hardware at 800Mhz
– 6-wide, 10-stage pipeline at 800Mhz on 0.18 µ process

• Itanium 2™ is name of 2nd implementation (2005)
– 6-wide, 8-stage pipeline at 1666Mhz on 0.13 µ process
– Caches: 32 KB I, 32 KB D, 128 KB L2I, 128 KB L2D, 9216 KB L3
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Advantages of Superscalar over VLIW
• Old codes still run

– Like those tools you have that came as binaries
– HW detects whether the instruction pair is a legal dual 

issue pair
• If not they are run sequentially

• Little impact on code density
– Don’t need to fill all of the can’t issue here slots with 

NOP’s
• Compiler issues are very similar

– Still need to do instruction scheduling anyway
– Dynamic issue hardware is there so the compiler does 

not have to be too conservative
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Multiple Issue with Speculation
• Extend Tomasulo speculation algorithm to 

multiple-issue scheme
– 2 challenges

• Instruction issue
• Monitor CDB for instruction completion

– In addition,
• How to handle multiple instruction commits per clock 

cycle?
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Example
• Loop: LD R2, 0(R1)

DADDIU R2, R2, #1
SD R2, 0(R1)
DADDIU R1, R1, #4
BNE R2, R3, LOOP

• Assume separate integer FUs:
– for effective address calculation, 
– ALU operations, and
– branch condition evaluation

• Assume up to 2 instructions of any type can commit per 
clock



CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-35

Figure 3.33 & 3.34

R2

R2

R2

No Speculation
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R2

R2

R2

Speculation

Out-of-order executing In-order committing 
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Comparisons 
• Without speculation (Tomasulo only)

– L.D following BNE cannot start execution earlier wait 
until branch outcome is determined

– Completion rate is falling behind the issue rate rapidly, 
stall when a few more iterations are issued

• With speculation
– L.D following BNE can start execution early because it is 

speculative
– More complex HW is required
– Completion rate is almost equal to issue rate
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Outline
• Review
• Speculation
• Speculative Tomasulo Example
• Memory Aliases
• Exceptions
• VLIW
• Advanced Techniques for Instruction Delivery and 

Speculation
• Summary
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High-Performance Instruction Delivery

• For a multiple issue processor, 
predicting branches well is not 
enough

• Deliver a high-bandwidth instruction 
stream is necessary                       
(e.g., 4~8 instructions/cycle)
– Increasing instruction fetch bandwidth
– Speculation (branch, value prediction)
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Increasing Instruction Fetch Bandwidth
• Predicts next 

instruct address, 
sends it out before
decoding 
instructuction

• PC of branch sent to 
BTB

• When match is found, 
Predicted PC is 
returned

• If branch predicted 
taken, instruction 
fetch continues at 
Predicted PC

Branch Target Buffer (BTB)
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IF BW: Return Address Predictor
• Small buffer of return 

addresses acts as a 
stack

• Caches most recent 
return addresses

• Call ⇒ Push a return 
address 
on stack

• Return ⇒ Pop an 
address off stack & 
predict as new PC
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More Instruction Fetch Bandwidth
• Integrated branch prediction: branch predictor is 

part of instruction fetch unit and is constantly 
predicting branches

• Instruction prefetch: Instruction fetch units 
prefetch to deliver multiple instructions per clock, 
integrating it with branch prediction

• Instruction memory access and buffering:
Fetching multiple instructions per cycle:
– May require accessing multiple cache blocks (prefetch to 

hide cost of crossing cache blocks) 
– Provides buffering, acting as on-demand unit to provide 

instructions to issue stage as needed and in quantity 
needed
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Speculation: Register Renaming vs. ROB
• Alternative to ROB is a larger physical set of registers 

combined with register renaming
– Extended registers replace function of both ROB and 

reservation stations
• Instruction issue maps names of architectural 

registers to physical register numbers in extended 
register set 
– On issue, allocates a new unused register for the destination 

(which avoids WAW and WAR hazards)
– Speculation recovery easy because a physical register holding 

an instruction destination does not become the architectural 
register until the instruction commits

• Most Out-of-Order processors today use extended 
registers with renaming



CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-44

Value Prediction
• Attempts to predict value produced by instruction

– E.g., Loads a value that changes infrequently
• Value prediction is useful only if it significantly 

increases ILP
– Focus of research has been on loads; so-so 

results, no processor uses value prediction
• Related topic is address aliasing prediction

– RAW for load and store or WAW for 2 stores
• Address alias prediction is both more stable and 

simpler since need not actually predict the address 
values, only whether such values conflict
– Has been used by a few processors
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Remarks
• Interest in multiple-issue because wanted to improve 

performance without affecting uniprocessor programming model
• Taking advantage of ILP is conceptually simple, but design 

problems are amazingly complex in practice
• Conservative in ideas, just faster clock and bigger
• Processors of last 5 years (Pentium 4, IBM Power 5, AMD 

Opteron) have the same basic structure and similar sustained 
issue rates (3 to 4 instructions per clock) as the 1st dynamically 
scheduled, multiple-issue processors announced in 1995
– Clocks 10 to 20X faster, caches 4 to 8X bigger, 2 to 4X as 

many renaming registers, and 2X as many load-store units
⇒ performance 8 to 16X

• Peak vs. delivered performance gap increasing
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In Conclusion …
• Interrupts and Exceptions either interrupt the current 

instruction or happen between instructions
– Possibly large quantities of state must be saved before 

interrupting
• Machines with precise exceptions provide one single 

point in the program to restart execution
– All instructions before that point have completed
– No instructions after or including that point have completed

• Hardware techniques exist for precise exceptions even 
in the face of out-of-order execution!
– Important enabling factor for out-of-order execution


