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Why Pipeline? Because the resources are there!
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Pipeline Review
• A pipeline is like an hooked assembly line.
• Pipelining, in general, is not visible to the programmer (vs ILP)
• Pipelining doesn’t help latency of single task, it helps 

throughput of entire workload
• Pipeline rate limited by slowest pipeline stage
• Multiple tasks operating simultaneously using different 

resources
• Potential speedup = Number pipe stages, if perfectly balanced 

stage.
• Unbalanced lengths of pipe stages reduces speedup
• Time to “fill” pipeline and time to “drain” it reduces speedup
• Stall for Dependences
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Outline
• MIPS – An ISA example for 

pipelining
• 5 stage pipelining
• Structural and Data Hazards
• Forwarding
• Branch Schemes
• Exceptions and Interrupts
• Conclusion
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A "Typical" RISC ISA
• 32-bit fixed format instruction (3 formats)
• 32 32-bit GPR (R0 contains zero, DP take pair)
• 3-address, reg-reg arithmetic instruction
• Single address mode for load/store: 

base + displacement
– no indirection

• Simple branch conditions
• Delayed branch

see: SPARC, MIPS, HP PA-Risc, DEC Alpha, IBM PowerPC,
CDC 6600, CDC 7600, Cray-1, Cray-2, Cray-3



CA Lecture03 - pipelining  (cwliu@twins.ee.nctu.edu.tw) 03-6

Example: MIPS (- MIPS)

Op
31 26 01516202125

Rs1 Rd immediate

Op
31 26 025

Op
31 26 01516202125

Rs1 Rs2

target

Rd Opx

Register-Register
561011

Register-Immediate

Op
31 26 01516202125

Rs1 Rs2/Opx immediate

Branch

Jump / Call
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Datapath vs Control

• Datapath: Storage, FU, interconnect sufficient to perform 
the desired functions
– Inputs are Control Points
– Outputs are signals

• Controller: State machine to orchestrate operation on the 
data path
– Based on desired function and signals

Datapath Controller

Control Points

signals
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Approaching an ISA
• Instruction Set Architecture

– Defines set of operations, instruction format, hardware 
supported data types, named storage, addressing modes, 
sequencing

• Meaning of each instruction is described by RTL on 
architected registers and memory

• Given technology constraints assemble adequate datapath
– Architected storage mapped to actual storage
– Function units to do all the required operations
– Possible additional storage (eg. MAR, MBR, …)
– Interconnect to move information among regs and FUs

• Map each instruction to sequence of RTLs
• Collate sequences into symbolic controller state transition 

diagram (STD)
• Lower symbolic STD to control points
• Implement controller



CA Lecture03 - pipelining  (cwliu@twins.ee.nctu.edu.tw) 03-9

Outline
• MIPS – An ISA example for 

pipelining -- Read Appendix B
• 5 stage pipelining
• Structural and Data Hazards
• Forwarding
• Branch Schemes
• Exceptions and Interrupts
• Conclusion
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The Five Steps of the Load Instruction

• Every instruction can be implemented in at most 5 clock cycle
• Ifetch: Instruction Fetch

– Fetch the instruction from the Instruction Memory
• Reg/Dec: Registers Fetch  and Instruction Decode
• Exec: Execution and calculate the memory address
• Mem: Read the data from the Data Memory
• Wr: Write the data back to the register file

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Ifetch Reg/Dec Exec Mem WrLoad

Branch requires ? cycles, Store requires ? cycles, others require ? cycles
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The Four Steps of R-type Instruction

• Ifetch: Instruction Fetch
– Fetch the instruction from the Instruction Memory
– Update PC

• Reg/Dec: Registers Fetch  and Instruction Decode
• Exec: 

– ALU operates on the two register operands
• Wr: Write the ALU output back to the register file

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Ifetch Reg/Dec Exec WrR-type

does not access data memory…
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Important Observation
• Each functional unit can only be used once per instruction
• Each functional unit must be used at the same step for all 

instructions:
– Load uses Register File’s Write Port during  its 5th step

– R-type uses Register File’s Write Port during its 4th step

Ifetch Reg/Dec Exec Mem WrLoad
1 2 3 4 5

Ifetch Reg/Dec Exec WrR-type
1 2 3 4

This’s what caused 
the problem

Structural hazard !!
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Pipelining the R-type and Load Instruction

• We have pipeline conflict or structural hazard:
– Two instructions try to write to the register file at the 

same time!
– Only one write port

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec Mem WrLoad

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec WrR-type

Ops!  We have a problem!
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Sol 1: Insert “Bubble” into the Pipeline

• Insert a “bubble” into the pipeline to prevent 2 writes at 
the same cycle
– The control logic can be complex.
– Lose instruction fetch and issue opportunity.

• No instruction is started in Cycle 6!

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec

Ifetch Reg/Dec Exec Mem WrLoad

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec WrR-type Pipeline

Bubble

Ifetch Reg/Dec Exec WrR-type
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Sol 2: Delay R-type’s Write by One Cycle
• Now R-type instructions also use Reg File’s write port at Step 5
• Mem step for R-type inst. is a NOOP : nothing is being done.

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Exec Mem WrLoad

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Exec WrR-type Mem

Exec

Exec

Exec

Exec

1 2 3 4 5



Similarly, the Four Steps of Store

• Ifetch: Instruction Fetch
– Fetch the instruction from the Instruction Memory
– Update PC

• Reg/Dec: Registers Fetch  and Instruction Decode
• Exec: Calculate the memory address
• Mem: Write the data into the Data Memory

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Ifetch Reg/Dec Exec MemStore Wr

In order to keep our pipeline 
uniform



The Three Steps of Beq

• Ifetch: Instruction Fetch
– Fetch the instruction from the Instruction Memory

• Reg/Dec: 
– Registers Fetch  and Instruction Decode

• Exec: 
– compares the two register operand, 
– select correct branch target address
– latch into PC

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Ifetch Reg/Dec Exec MemBeq Wr
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Designing a Pipelined Processor
• Examine the datapath and control diagram

– Starting with single- or multi-cycle datapath?
– Single- or multi-cycle control?

• Partition datapath into steps
• Insert pipeline registers between 

successive steps
• Associate resources with steps
• Ensure that flows do not conflict, or 

figure out how to resolve
• Assert control in appropriate stage
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5 Steps of MIPS Datapath
Memory
Access

Write
Back

Instruction
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Instr. Decode
Reg. Fetch

Execute
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L
M
D

A
LU

M
U

X

M
em

ory

Reg
File

M
U

X
M

U
X

D
ata

M
em

ory

M
U

X

Sign
Extend

4
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Next SEQ PC

A
ddress

Next PC

WB Data

Inst

RD

RS1

RS2

ImmIR <= mem[PC];

PC <= PC + 4

Reg[IRrd] <= Reg[IRrs] opIRop Reg[IRrt]
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5 Steps of MIPS Datapath
Memory
Access

Write
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IR <= mem[PC]; 

PC <= PC + 4
A <= Reg[IRrs]; 

B <= Reg[IRrt]

rslt <= A opIRop B

Reg[IRrd] <= WB
WB <= rslt

Pipeline registers (latches)
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Inst. Set Processor Controller
IR <= mem[PC]; 

PC <= PC + 4

A <= Reg[IRrs]; 

B <= Reg[IRrt]

r <= A opIRop B

Reg[IRrd] <= WB

WB <= r

Ifetch

opFetch-DCD

PC <= IRjaddrif bop(A,b)

PC <= PC+IRim

br jmp
RR

r <= A opIRop IRim

Reg[IRrd] <= WB

WB <= r

RI
r <= A + IRim

WB <= Mem[r]

Reg[IRrd] <= WB

LD

ST
JSR JR

• Use data stationary control
– local decode for each instruction phase / pipeline stage



• Pass control signals along just like the data
– Main control generates control signals during ID 

Data Stationary Control

Control

EX

M

WB

M

WB

WB

IF/ID ID/EX EX/MEM MEM/WB

Instruction



Use of “Data Stationary Control”

• The Main Control generates the control signals during Reg/Dec
– Control signals for Exec (ExtOp, ALUSrc, ...) are used 1 cycle later
– Control signals for Mem (MemWr Branch) are used 2 cycles later
– Control signals for Wr (MemtoReg MemWr) are used 3 cycles later

IF/ID
 R

egister

ID
/E

x R
egister

E
x/M

em
R

egister

M
em

/W
r

R
egister

Reg/Dec Exec Mem

ExtOp

ALUOp
RegDst

ALUSrc

Branch
MemWr

MemtoReg
RegWr

Main
Control

ExtOp

ALUOp
RegDst

ALUSrc

MemtoReg
RegWr

MemtoReg
RegWr

MemtoReg
RegWr

Branch

MemWr

Branch
MemWr

Wr
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Visualizing Pipelining
Figure A.2, Page A-8
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Outline
• MIPS – An ISA example for 

pipelining
• 5 stage pipelining
• Structural and Data Hazards
• Forwarding
• Branch Schemes
• Exceptions and Interrupts
• Conclusion
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Pipelining is not quite that easy!
• Limits to pipelining: Hazards prevent next 

instruction from executing during its designated 
clock cycle
– Structural hazards: HW cannot support this combination 

of instructions (single person to fold and put clothes 
away)

– Data hazards: Instruction depends on result of prior 
instruction still in the pipeline (missing sock)

– Control hazards: Caused by delay between the fetching 
of instructions and decisions about changes in control 
flow (branches and jumps).
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One Memory Port/Structural Hazards

Detection is easy in this case! (right half highlight means read, left half write)

Time (clock cycles)
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Structural Hazards Limit 
Performance

• Why? The primary reason is to reduce cost of the 
unit

• Example: if 1.3 memory accesses per instruction 
and only one memory access per cycle then
– average CPI = 1.3
– otherwise resource is more than 100% utilized

• Solution 1: Use separate instruction and data 
memories

• Solution 2: Allow memory to read and write more 
than one word per cycle

• Solution 3: Stall
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Speed Up Equations for Pipelining

pipelined

dunpipeline

Time Cycle
Time Cycle
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+
×

=
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CPI stall Pipeline  1

depth Pipeline  Speedup ×
+

=

Instper  cycles Stall Average  CPI Ideal  CPIpipelined +=

For simple RISC pipeline, CPI = 1:

de pipelineClock cycl
nede unpipeliClock cycl

CPI
CPI

inedtime pipelstruction Average in
elinedtime unpipstruction Average inSpeedup

pipelined

dunpipeline ×==
 

 

for balanced pipelining
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Example: One or Two Memory Ports?
• Machine A: Dual ported memory (“Harvard Architecture”)
• Machine B: Single ported memory, but its pipelined 

implementation has a 1.05 times faster clock rate
• Ideal CPI = 1 for both
• Loads are 40% of instructions executed

SpeedUpA = Pipeline Depth/(1 + 0) x (clockunpipe/clockpipe)
= Pipeline Depth

SpeedUpB = Pipeline Depth/(1 + 0.4 x 1) x (clockunpipe/(clockunpipe / 1.05)
= (Pipeline Depth/1.4) x  1.05
= 0.75 x Pipeline Depth

SpeedUpA / SpeedUpB = Pipeline Depth/(0.75 x Pipeline Depth) = 1.33

• Machine A is 1.33 times faster
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One Memory Port Structural Hazards
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Load

Instr 1

Instr 2

Stall

Instr 3

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg A
LU DMemIfetch Reg

Bubble Bubble Bubble BubbleBubble

How do you “bubble” the pipe?
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Handling Stalls
• How to stall?

– Stall instruction in IF and ID: not change PC 
and IF/ID
=> the stages re-execute the instructions

– What to move into EX: insert an NOP by 
changing EX, MEM, WB control fields of 
ID/EX pipeline register to 0

• as control signals propagate, all control signals to EX, 
MEM, WB are de-asserted and no registers or 
memories are written
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Data Hazard Problem

add    r1 ,r2,r3

sub r4, r1 ,r3

and r6, r1 ,r7

or   r8, r1 ,r9

xor r10, r1 ,r11

• Due to the overlapped instructions.

Example: r1 cannot be read by other instructions 
before it is written by the add.
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add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or   r8,r1,r9

xor r10,r1,r11
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RAW Hazards on R1
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IF ID/RF EX MEM WB

Dependencies backwards in time are hazards
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Types of Data Hazards
Three types: (inst. i1 followed by inst. i2)
• RAW (read after write): dependence

i2 tries to read operand before i1 writes it
• WAR (write after read): anti-dependence

i2 tries to write operand before i1 reads it
– Gets wrong operand, e.g., auto-increment addr.
– Can’t happen in MIPS 5-stage pipeline because:

• All instructions take 5 stages, and reads are always in stage 2, and 
writes are always in stage 5

• WAW (write after write): output dependence
i2 tries to write operand before i1 writes it
– Leaves wrong result ( i1’s not i2’s); occur only  in pipelines that 

write in more than one stage
– Can’t happen in MIPS 5-stage pipeline because:

• All instructions take 5 stages, and writes are always in stage 5
– Out of order executions may suffer this data dependence
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• Write After Read (WAR)
InstrJ writes operand before InstrI reads it

• Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”.

• Can’t happen in MIPS 5 stage pipeline because:
• Can happen in between a shorter (Int) pipeline and a longer (FP) 

pipeline
• WAR hazards can happen if instructions execute out of order 

or access data late

I: sub r4,r1,r3 
J: add r1,r2,r3
K: mul r6,r1,r7

WAR Data Hazard
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WAW Data Hazard

Write After Write (WAW)
InstrJ writes operand before InstrI writes it.

• Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”.

• Can’t happen in 5 stage pipeline because: 
– All instructions take 5 stages, and 
– Writes are always in stage 5

• Will see WAR and WAW in more complicated pipes

I: sub r1,r4,r3 
J: add r1,r2,r3
K: mul r6,r1,r7
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Data Forwarding to Avoid Data Hazard
• With data forwarding (also called bypassing or short-

circuiting), data is transferred back to earlier pipeline 
stages before it is written into the register file. 

– Instr i: add r1,r2,r3 (result ready after EX stage)
----------------------

– Instr j: sub r4,r1,r5 (result needed in EX stage)

• This either eliminates or reduces the penalty of RAW 
hazards.

• To support data forwarding, additional hardware is required.  
– Multiplexors to allow data to be transferred back
– Control logic for the multiplexors
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Data Hazard Solution
“Forward” result from one stage to another

“or” OK if define read/write properly
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HW Change for Forwarding
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Time (clock cycles)
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lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or   r8,r1,r9

Data Hazard Even with Forwarding

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Can’t solve with forwarding

Must delay/stall instruction dependent on loads
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Pipeline Interlock Solution for 
Load Stall

Time (clock cycles)

or   r8,r1,r9
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lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

Reg A
LU DMemIfetch Reg

RegIfetch A
LU DMem RegBubble

Ifetch A
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Ifetch

A
LU DMemBubble Reg

Pipeline interlockHow is this detected?
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Try producing fast code for
a = b + c;
d = e – f;

assuming a, b, c, d ,e, and f in memory. 
Slow code:

LW Rb,b
LW Rc,c
ADD Ra,Rb,Rc
SW  a,Ra
LW Re,e 
LW Rf,f
SUB Rd,Re,Rf
SW d,Rd

Software Scheduling to Avoid Load Hazards

Fast code:
LW Rb,b
LW Rc,c
LW Re,e 
ADD Ra,Rb,Rc
LW Rf,f
SW  a,Ra
SUB Rd,Re,Rf
SW d,Rd

Compiler optimizes for performance.  Hardware checks for safety.
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Compiler Avoiding Load Stalls

% loads stalling pipeline

0% 20% 40% 60% 80%

tex

spice

gcc

25%

14%

31%

65%

42%

54%

scheduled unscheduled

Compilers reduce the number of load stalls, but do not 
completely eliminate them.
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Outline
• MIPS – An ISA example for 

pipelining
• 5 stage pipelining
• Structural and Data Hazards
• Forwarding
• Branch Schemes
• Exceptions and Interrupts
• Conclusion
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Control Hazard on Branches
Three Stages Stall

10: beq r1,r3,36

14: and r2,r3,r5 

18: or  r6,r1,r7

22: add r8,r1,r9

36: xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

What do you do with the 3 instructions in between?
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Control/Branch Hazards
• Control hazards, which occur due to instructions changing 

the PC, can result in a large performance loss.
• A branch is either

– Taken: PC <= PC + 4 + Imm ; branch target address
– Not Taken: PC <= PC + 4

• The simplest solution is to stall the pipeline as soon as a 
branch instruction is detected.
– Detect the branch in the ID stage
– Don’t know if the branch is taken until the EX stage
– If the branch is taken, we need to repeat the IF and ID stages
– New PC is not changed until the end of the MEM stage, after 

determining if the branch is taken and the new PC value
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Branch Stall Impact
• If CPI = 1, 30% branch, 

Stall 3 cycles => new CPI = 1.9 !!
• Two part solution:

– Determine branch taken or not sooner, AND
– Compute taken branch address earlier

• MIPS branch tests if register = 0 or ≠ 0
• MIPS Solution:

– Move Zero test to ID/RF stage
– Adder to calculate new PC in ID/RF stage
– 1 clock cycle penalty for branch versus 3
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Four Branch Hazard Alternatives
#1: Stall until branch direction is clear
#2: Predict Branch Not Taken

– Execute successor instructions in sequence
– “Squash” instructions in pipeline if branch actually taken
– Advantage of late pipeline state update
– 47% MIPS branches not taken on average
– PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken
– 53% MIPS branches taken on average
– But haven’t calculated branch target address in MIPS

• MIPS still incurs 1 cycle branch penalty
• Other machines: branch target known before outcome
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Four Branch Hazard Alternatives

#4: Delayed Branch -- make the stall cycle useful
– Define branch to take place AFTER a following instruction

branch instruction
sequential successor1
sequential successor2
........
sequential successorn

branch target if taken

– 1 slot delay allows proper decision and branch target address 
in 5 stage pipeline

– MIPS uses this

e.g. Branch delay slot 
of length n
These insts. are executed !!
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Stall -- Control Hazard Solution
• Stall: wait until decision is clear

– It’s possible to move up decision to 2nd stage by adding 
hardware to check registers as being read

• Impact: 2 cycles (or 1 cycle penalty) per branch instruction 
=> slow
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Time (clock cycles)
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UMem Reg Mem Reg

A
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UMem Reg Mem Reg

A
L

UReg Mem RegMem
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Predict-- Control Hazard Solution
• Predict: guess one direction then back up if wrong

– Predict not taken, for example

• Impact: 1 clock cycle per branch instruction if right, 2 if 
wrong
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Predict-Not-Taken Example

A Stall indeed

1 clock cycle per branch instruction if right, 2 if wrong
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Delayed Branch-- Control Hazard Solution

• Redefine branch behavior (takes place after next instruction) 
“delayed branch”

• Impact: 1 clock cycles per branch instruction if can find 
instruction to put in “slot”
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Delayed Branch
• Delayed branch make the stall cycle useful

– Add delay slots = branch penalty = length of 
branch delay

• 1 slot for 5-stage DLX/MIPS
– Instructions in the delay slot are executed 

whether or not the branch is taken
– See if the compiler can schedule something 

useful in these slots
• When the slots cannot be scheduled, they are filled 

with the no-op instruction (indeed, stall!!)
– Hope that filled slots actually help advance the 

computation
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Scheduling Branch Delay Slots

• A is the best choice, fills delay slot & reduces instruction count (IC)
• In B, the sub instruction may need to be copied, increasing IC
• In B and C, must be okay to execute sub when branch fails

add  $1,$2,$3
if $2=0 then

delay slot

A. From before branch B. From branch target C. From fall through

add  $1,$2,$3
if $1=0 then
delay slot

add  $1,$2,$3
if $1=0 then

delay slot

sub $4,$5,$6

sub $4,$5,$6

becomes becomes becomes

if $2=0 then

add  $1,$2,$3
add  $1,$2,$3
if $1=0 then
sub $4,$5,$6

add  $1,$2,$3
if $1=0 then

sub $4,$5,$6
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Delay-Branch Scheduling Schemes and 
Their Requirements

When branch is not 
taken.

Must be OK to execute 
instructions if branch is taken

From fall 
through

When branch is taken. 
May enlarge program
if instructions are 
duplicated

Must be OK to execute 
rescheduled instructions if 
branch is not taken. May need 
to duplicate instructions

From target

AlwaysBranch must not depend on 
the rescheduled instructions

From before

Improve Performance 
When?

RequirementsScheduling 
Strategy
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Delayed Branch Summary
• Compiler effectiveness for single branch delay slot:

– Fills about 60% of branch delay slots
– About 80% of instructions executed in branch delay slots 

useful in computation
– About 50% (60% x 80%) of slots usefully filled

• As processor go to deeper pipelines and multiple 
issue, the branch delay grows and need more than 
one delay slots
– Delayed branching (the static way) has lost popularity 

compared to more expensive but more flexible dynamic 
approaches

– Growth in available transistors has made dynamic 
approaches relatively cheaper
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Evaluating Branch Alternatives

• Assume 4% unconditional branch, 6% conditional branch-
untaken, 10% conditional branch-taken

Branch Branch CPI speedup v. speedup v.
scheme penalty unpipelined stall

Stall pipeline 3 1.60 3.1 1.0
Predict taken 1 1.20 4.2 1.33
Predict not taken 1 1.14 4.4 1.40
Delayed branch 0.5 1.10 4.5 1.45

Pipeline speedup = Pipeline depth
1 +Branch frequency ×Branch penalty
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Deeper Pipeline Example
• For a deeper pipeline, e.g. MIPS R4K, it takes at least 3 

pipeline stages before the branch-target address is known 
and an additional cycle before the branch condition is 
evaluated, assuming no stalls on the registers in the 
conditional comparisons
– Assuming an ideal CPI of 1,

penaltyBranch  frequency Branch   branches from cycles stall Pipeline ×=

 
 branches from cycles stall Pipeline  1

depth Pipeline  Speedup
+

=
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Branch Penalties

Branch Penalty Penalty Penalty
scheme unconditional. untaken taken

Flush pipeline 2 3 3
Predict taken 2 3 2
Predict not taken 2 0 3

Try to find the CPI penalties for 3 branch schemes (Fig. A.16)

• Assume 4% unconditional branch, 6% conditional branch-
untaken, 10% conditional branch-taken

• Branch penalties
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Problems with Pipelining
• Exception:  An unusual event happens to an instruction during its 

execution  
– Examples: divide by zero, undefined opcode

• Interrupt:  Hardware signal to switch the processor to a new 
instruction stream  

– Example: a sound card interrupts when it needs more audio output
samples (an audio “click” happens if it is left waiting)

• Problem: It must appear that the exception or interrupt must 
appear between 2 instructions (Ii and Ii+1)

– The effect of all instructions up to and including Ii is totalling
complete

– No effect of any instruction after Ii can take place 
• The interrupt (exception) handler either aborts program or 

restarts at instruction Ii+1
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Exceptions in MIPS

NonWB

Page fault on data fetch; misaligned 
memory access; memory protection 
violation

MEM
Arithmetic exceptionEX
Undefined or illegal opcodeID

Page fault on instruction fetch; misaligned 
memory access; memory protection 
violation

IF
Problem exceptions occurringPipeline stage

Note: Multiple exceptions may occur in the same clock cycle
in pipelining architecture



Precise Exceptions in Static Pipelines

Key observation: architected state only change 
in memory and register write stages.
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And In Conclusion: Control & Pipelining
• Control VIA State Machines and Microprogramming
• Just overlap tasks; easy if tasks are independent
• Speed Up ≤ Pipeline Depth; if ideal CPI is 1, then:

• Hazards limit performance on computers:
– Structural: need more HW resources
– Data (RAW,WAR,WAW): need forwarding, compiler 

scheduling
– Control: delayed branch, prediction

• Exceptions, Interrupts add complexity

pipelined

dunpipeline

Time Cycle
Time Cycle

  
CPI stall Pipeline  1

depth Pipeline  Speedup ×
+

=


