5008: Computer Architecture
HW#4 Solution

€ Limits on Instruction-Level Parallelism

3.1

Figure L.20 shows the dependence graph for the C code in Figure 3.14. Each
node in Figure L.20 corresponds to a line of C statement in Figure 3.14. Note
that each node 6 in Figure L.20 starts an iteration of the for loop in Figure

3.14.

Figure L.20 Dynamic dependence graph for six insertions under the ideal case.

Since we are assuming that each line in Figure 3.14 corresponds to one
machine instruction, Figure L.20 can be viewed as the instruction-level
dependence graph. A data true dependence exists between line 6 and line 9.
Line 6 increments the value of i, and line 9 uses the value of i to index into
the element array. This is shown as an arc from node 6 to node 9 in Figure
L.20. Line 9 of Figure 3.14 calculates the hash_index value that is used by
lines 10 and 11 to index into the element array, causing true dependences
from line 9 to line 10 and line 1. This is reflected by arcs going from node 9
to node 10 and node 11 in Figure L.20. Line 11 in Figure 3.14 initializes

ptrCurr, which is used by line 12. This is reflected as a true dependence arc
from node 11 to node 12 in Figure 1..20.

Note that node 15 and node 16 are not reflected in Figure L.20. Recall that all
buckets are initially empty and each element is being inserted into a different
bucket. Therefore, the while loop body is never entered in the ideal case.
Line 12 of Figure 3.14 enforces a control dependence over line 17 and line
I8. The execution of line 17 and line 18 hinges upon the test that skips the
while loop body. This is shown as control dependence arcs from node 12 to
node 17 and node 18.

There is a data output dependence from Line 9 of one iteration to Line 9 of
the next iteration. This i1s due to the fact that both dynamic structions need
to write into the same variable hash_index. For simplicity, we omitted the
data output dependence from Line 10 of one iteration to itself in the next iter-
ation due to variable ptrUpdate as well as the dependence from Line 11 of
one iteration to itself in the next iteration due to variable ptrCurr.

There is a data antidependence from Line 17 of one iteration to Line 10 of the
next iteration. This is due to the fact that Line 17 needs to read from variable
ptrUpdate before Line 10 of the next iteration overwrites its contents. The
reader should verify that there are also data anti--dependences from Lines 10
and 11 of one iteration to Line 9 of the next iteration, from Line 18 to Line 10
of the next iteration, and from Line 12 to Line 11 for the next iteration.

Note that we have also omitted some data true dependence arcs from Figure
L.20. For example, there should be a true dependence arc from node 10 to
node 17 and node 18, This is because line 10 of Figure 3.14 initializes
ptrUpdate, which is used by lines 17 and 18. These dependences, however,
do not impose any more constraints than what is already imposed by the con-
trol dependence arcs from node 12 to node 17 and node 18. Therefore, we
omitted these dependence arcs from Figure L.20) in favor of simplicity. The
reader should identify any other omitted data true dependences from Figure

L.20.

In the ideal case, all for loop iterations are independent of each other once
the for loop header (node 6) generates the i value needed for the iteration.
Node 6 of one iteration generates the i value needed by the next iteration.
This is reflected by the dependence arc going from node 6 of one iteration to
node 6 of the next iteration. There are no other dependence arcs going from
any node m a for loop iteration to subsequent iterations. This is because each
for loop iteration is working on a different bucket. The changes made by line
I8 (xptrUpdate=) to the pointers in each bucket will not affect the insertion
of data into other buckets. This allows for a great deal of parallelism.

Recall that we assume that each statement in Figure 3.14 corresponds to one
machine instruction and takes 1 clock cycle to execute. This makes the
latency of nodes in Figure L.20 | cycle each. Therefore, each horizontal row
of Figure L.20 represents the instructions that are ready to execute at a clock

cycle. The width of the graph at any given point corresponds to the amount of
instruction-level parallelism available during that clock cycle.

-~

10
11

12
13
14
15
16

17
18

o
10
171
12
13
14
15
16

17
18

As shown i Figure L.20, each iteration of the outer for loop has 7 instruc-
tions. It iterates 1024 times. Thus, 7168 instructions are executed.

The for loop takes 4 cycles to enter steady state. After that, one iteration is
completed every clock cycle. Thus the loop takes 4 + 1024 = 1028 cycles to
execulte.

7168 instructions are executed in 1028 cycles. The average level of ILP avail-
able 1s 7168/1028 = 6.973 instructions per cycle.

See Figure L.21. Note that the cross-iteration dependence on the i value cal-
culation can easily be removed by unrolling the loop. For example, one can
unroll the loop once and change the usage of the array index usage of the

for (i = 0; i < N_ELEMENTS; i+=2)
{
Element #*ptrCurr, **ptrUpdate;
int hash_index;

/* Find the location at which the new element is to be inserted. */
hash index = element[i].value & 1023;
ptrUpdate = &bucket[hash_index];
ptrCurr = bucket[hash_index];
/* Find the place in the chain to insert the new element. */
while (ptrCurr 2&

ptrlurr->value <= element[i].value)

{
ptripdate = &ptrlurr->next;
ptrCurr = ptrCurr->next;

}

/* Update pointers to insert the new element into the chain. */
element[i] .next = *ptrUpdate;
*ptrlUpdate = &element[i];

hash_index = element[i+1].value & 1023;
ptrUpdate = $bucket[hash_index];
ptrCurr = bucket[hash_index];
while (ptrCurr 2&
ptrlurr->value <= element[i+l].value)

{
ptripdate = &§ptrCurr->next;
ptrlCurr = ptrCurr->next;

}

/* Update pointers to insert the new element into the chain. */
element [i+1] .next = *ptrUpdate;
*ptrlUpdate = &felement[i+1]:

Figure L.21 Hash table code example.

unrolled iteration to element[i+1]. Note that the two resulting parts of the
for loop body after unrolling transformation are completely independent of
each other. This doubles the amount of parallelism available. The amount of
parallelism is proportional to the number of unrolls performed. Basically,
with the ideal case, a compiler can easily transform the code to expose a very
large amount of parallelism.

e. Figure L.22 shows the time frame in which each of these variables needs to
occupy a register. The first iteration requires 4 registers. The reader should be
able to tell some variables can occupy a register that is no longer needed by
another variable. For example, the hash_index of iteration 2 can occupy the
same register occupied by the hash_index of iteration 1. Therefore, the over-
lapped execution of the next iteration uses only 2 additional registers.

Similarly the third and the fourth iteration each requires another one register.
Each additional iteration requires another register. By the time the fifth itera-
tion starts execution, it does not add any more register usage since the register
for i value in the first iteration is no longer needed. As long as the hardware
has no fewer than 8 registers, the parallelism shown in Figure 3.15 can be
fully realized. However, if the hardware provides fewer than 8 registers, one
or more of the iterations will need to be delayed until some of the registers
are freed up. This would result in a reduced amount of parallelism.

ptrélurr

hash_index I:;J,i]—_____
i —
% |

ptrlUpdate n

| ptr(JI)urr

!
-
o

ptrUpdate

ptrpdate

Figure L.22 Register lifetime graph for the ideal case.

f. See Figure L.23. Each iteration of the for loop has 7 instructions. In a pro-
cessor with an issue rate of 3 instructions per cycle, it takes about 2 cycles for
the processor to issue one iteration. Thus, the earliest time the instructions in
the second iteration can be even considered for execution is 2 cycles after the
first iteration. This delays the start of the next iteration by 1 clock cycle.
Figure L..24 shows the instruction issue timing of the 3-issue processor. Note
that the limited issue rate causes iterations 2 and 3 to be delayed by 1 clock
cycle. It causes iteration 4, however, to be delayed by 2 clock cycles. This is a
repeating pattern.

Cycle
1 6 9 10
2 11 12 17
3 18 6 9
4 10 11 12
5 17 18 6
6 9 10 11
7 12 17 18
3 6 9 10

Figure L.23 Instruction issue timing.

a —
/N)

0
|
o

o]

-
]
-
2] P
-
[=]
H

Figure L.24 Execution timing due to limited issue rate for the ideal case.

The reduction of parallelism due to limited instruction issue rate can be cal-
culated based on the number of clock cycles needed to execute the for loop.
Since the number of instructions in the for loop remains the same, any
increase in execution cycle results in decreased parallelism. It takes 5 cycles
for the first iteration to complete. After that, one iteration completes at cycles
7.9.12, 14,16, 19, Thus the for loop completes in 5 + 2 x 645 + 3 %
342 =5+ 1290 + 684 = 1979 cycles. When compared to part (b), limiting the
issue rate to 3 instructions per cycle reduces the amount of parallelism to
about half!

In order to achieve the level of parallelism shown in Figure 3.15. we must
assume that the instruction window is large enough to hold instructions 17,
I8 of the first iteration, instructions 12, 17, 18 of the second iteration, instruc-
tions 10, 11, 12, 17, and 18 of the third iteration as well as instructions 9, 10,
11, 12, 17, 18 of the second iteration when instruction @ of the third iteration
1s considered for execution. If the instruction window is not large enough. the
processor would be stalled before instruction 6 of the third iteration can be
considered for execution. This would increase the number of clocks required
to execute the for loop, thus reducing the parallelism. The minimal instruc-
tion window size for the maximal ILP is thus 17 instructions. Note that this is
a small number. Part of the reason is that we picked a scenario where there 1s
no dependence across for loop iterations and that there is no other realistic
resource constraints. The reader should verify that, with more realistic execu-
tion constraints, much larger instruction windows will be needed in order to
support available TLP.

€ Review of Memory Hierarchy

1

A useful tool for solving this type of problem is to extract all of the available
information from the problem description. It is possible that not all of the infor-
mation will be necessary to solve the problem, but having it in summary form
makes it easier to think about. Here is a summary:

Processor information

B [n-order execution

® |.1 GHz ((1.909 ns equivalent)

B CPlof 0.7 (excludes memory accesses)
Instruction mix

B 75% non-memory-access instructions
B 20% loads

B 5% stores

Memory system

B Split L1 with no hit penalty, (i.e., the access time 1s the time it takes to
execute the load/store instruction)

128-bit, 266 MHz bus (3.75 ns equivalent) between the L1 and L2 caches
m LI [-cache

m 32 KB, direct mapped

B 2% miss rate

m 32-byte blocks (requires 2 bus cycles to fill)

B Miss penalty 1s 17 ns + 2 cycles = 24.5 ns
B L1 D-cache

m 32 KB, direct mapped, write-through (no write-allocate)

B 5% miss rate

B 95% of all writes do not stall because of a write buffer
B [6-byte blocks (requires 1 bus cycle to fill)
B Miss penalty is 17 ns + | eycle =20.75 ns

B Miss penalty on write-through is 17 ns
B L2 (unified) cache, associativity not given—assume full
B 512 KB, write-back (write-allocate)
B 80% hit rate
B 50% of replaced blocks are dirty {must go to main memory)
B access time 1s 15 ns (66.7 MHz equivalent)
B (4-byte blocks (requires 2 bus cycles to fill)
B Miss penalty 1s 60 ns + 7.52 ns = 67.52 ns
B Memory
B |28 bits (16 bytes) wide
B first access takes 60 ns (16.7 MHz equivalent)
B subsequent accesses take 1 cycle on 133 MHz, 128-bit bus (7.52 ns
equivalent)

Note that the processor in this description is similar to the Sun UltraSPARC TI1
described in Section 5.15 of the text. Looking at the description of that processor
can be useful in understanding the issues involved in the solution of this problem.

The problem statement says the L1 cache “imposes no penalty on hits.” The
problem does not say anything about the execution time taken by a memory-
access instruction. That is, each memory access instruction must pass through the
processor pipeline, incurring some execution latency. The solution will assume
this latency is zero

Since the problem provides bus information, it is possible to include the effects of
bus contention in the solution. The solution provided here assumes that the bus is
able to support the required traffic. The instructor may wish to grant extra credit
to students who include bus contention in their calculations. Also, note that this

solution assumes that cache miss penalties are cumulative. That is, there is no
overlap between the miss penalty for the L1 cache and the L2 cache when a
memory access must go to memory.

Finally, we must consider how data is delivered when a request is satisfied using
multiple bus transactions. It is possible to deliver the data with the critical (word
or other portion) first. This solution assumes delivery in address order.

a. What is the average memory access time for instruction accesses?

This is the average time to fetch an instruction. Assuming no bus contention,
the average memory access time for instruction accesses depends on the hit/
miss rates of the two caches. Keep in mind that the instruction miss rate nor-
mally never falls far below 1 / instructions per cache line, since only the first
instruction of each line or branch targets falling into another line cause a
miss. For this reason, architects consider L1 instruction cache miss rates of
10% to be very high, although data miss rates are often larger than this.
Finally, note that 50% of all blocks replaced in the L2 cache are dirty. This is
the origin of the 1.5 factor in the term for memory accesses.

avg. fetch time

Z (peortion of accesses x hit penalty)
L1, L2, Memory
(1-002)x0ns+0.02x245 ns+002x(1-0.80) x1.5x67.5 ns
0.895 ns x 1.1 clock cveles / ns

0.985 clock cycles

b. What is the average memory access time for data reads?

We compute this the same way as the time for instruction reads, with the
same caveats.

avg. access time = z (portion of accesses % hit penalty)

L1, L2, Memory

(1-0.02) >0 ns+0.02x20.75 ns+0.02 x(1-0.80) x 1.5 x67.5 ns
0.820 ns % 1.1 clock cycles / ns

= 0.902 clock cycles

c. What is the average memory access time for data writes?

This computation is similar to those above, except that we must include the
effect of the write buffer on misses in the L1 data cache. This is the origin of
the 1-0.95 term in the calculation of the traffic going to the L2 cache, and
consequently the main memory.,

avg. access time = Z (portion of accesses ¥ hit penalty)
L1, L2, Memory
(1-0.05)%0 ns+005x(1-0.95)+17 ns +

0.05%(1-095)x(1-0.80)x1.5x67.5 ns

= 0.931 nsx 1.1 clock cycles / ns

1.02 clock cycles

d. What is the overall CPI, including memory accesses?

The overall CPI 1s sum of the CPlIs for each type of nstruction, scaled by
their portion of the total instruction mix.

overall_CPI = instruction fetch time + z{ portion of instructions ¥ CPI)

computation, D) reads, D writes

0.985 CPI+0.75 x0.700 CPI +0.20 x 0.902 CPI + 0.05 x 1.02 CPI
1.74 CPI

e. You are considering replacing the 1.1 GHz CPU with one that runs at 2.1
GHz. but 1s otherwise identical. How much faster does the system run with a
faster processor?

The system specifications remain the same as detailed above, except for the
following:

B Processor information
® 2.1 GHz (0.476 ns equivalent)
Doing the same calculations as above, but with 0.476 ns substituted for 0.909
ns, we get
avg. fetch time = 0.895 ns x 2.1 clock cycles /ns = 1.88 clock cycles
avg. access time g, ooq0 = 0.820 ns x 2.1 clock cycles /ns = 1.72 clock cycles
avg. access time gy, .. = 0.931 nsx 2.1 clock cycles / ns = 1.96 clock cycles

overall_CPI = 1.88 CPI+0.75x 0700 CPI + 0.20 % 1.72 CPI 4+ 0.05 % 1.96 CPI
2.85 CPI

. If you want to make your system run faster, which part of the memory system

would you improve? Graph the change in overall system performance, hold-
ing all parameters fixed except the one that you are improving. Based on
these graphs, how could you best improve overall system performance with
minimal cost?
I am not supplying a solution to this, as there are so many ways to answer it.
One 1ssue is how you measure the cost of changing each system parameter.
Since there is no way to know the real cost, the student should make an argu-
ment to modify the parameters that show the best improvement per unit
change.

The merging write buffer links the CPU to the write-back L2 cache. Two CPU
writes cannot merge if they are to different sets in L2. So, for each new entry into
the buffer a quick check on only those address bits that determine the L2 set num-
ber need be performed at first. If there is no match in this “screening” test, then
the new entry is not merged. If there is a set number match, then all address bits
can be checked for a definitive result.

As the associativity of L2 increases, the rate of false positive matches from the
simplified check will increase, reducing performance.

The interaction of the cache storage organization and replacement policy with the
specifics of program memory access patterns yields cache behavior that can only
be called complex.

d.

Looking at the surface of the three C’s cache miss model, a fully associative
cache should have fewer non-compulsory misses (capacity plus conflict) than
an equal size direct mapped cache because conflict misses are in addition to
capacity misses and occur only in set associative or direct mapped caches.
Capacity misses are defined as those misses in a fully associative cache that
occur when a block is retrieved any time(s) after its initial compulsory miss.

The genesis of the opportunity for a small direct mapped cache to outperform
an equally sized fully associative cache can be found in the question hiding
within this definition of capacity misses and left begging for an answer. If
fully associative cache capacity misses are caused by blocks being discarded
before their final use, why are these blocks discarded and must otherwise
equivalent set associative or direct mapped caches discard the same blocks at
the same times during program execution?

Blocks are discarded, or replaced, based on the decision of the replacement
policy. This replacement decision is very important to cache performance. If
the block chosen for replacement is not referenced in the future by the pro-
gram, then no capacity miss or conflict miss can occur in the future. This is
the 1deal case. If the block chosen for replacement will be used again in the
very near future or is used frequently, as compared to other candidate blocks
for replacement, then the replacement choice is a poor one and cache perfor-
mance will be generally worse than ideal.Because fully associative, set asso-
ciative. and direct mapped caches have different block placement constraints,
the block re-placement policy for one cache type cannot consider the same
blocks for replacement as are considered by the same policy on another orga-
nizational type. To see this more clearly, consider an example.

Let a program loop access three distinet addresses, A, B, and C, and then
repeat the sequence from A. The reference stream for this program at this
point would look like this: ABCABCABCA To simplify the discussion
we assume that the direct mapped and fully associative caches each can hold
two blocks and that addresses A and C are from different cache block frames
i memory but map to the same location in the direct mapped cache, while
address B maps to the other location in the cache. If the replacement policy
for the fully associative cache is LRU, then every reference generated by the
loop 1s a miss. If the replacement policy for the direct mapped cache 1s LRU
(a degenerate form to be sure, because with only one block in each set what-
ever blocks are in a direct mapped cache are all always “least recently used™),
accesses to A or C will always miss, but we will always hit on B (ignoring its
compulsory miss}.

The replacement policy of a fully associative cache can cast its eye on all the
blocks in the cache, and in our example, makes the worst possible choice for
replacement from all the blocks every time. For the direct mapped cache this
choice is also always the worst possible, but is limited to two of the three
blocks by cache structure. The result is that the direct mapped cache performs
better.

b. The three C's model considers the organization of the storage within a cache
(fully associative, set associative, or direct mapped), but it does not address
how the cache is managed when an access misses. If a block is to be allocated
on a miss (read or write) and there is no currently invalid (empty) location in
the cache available to hold the allocated block, then some valid block must be
replaced to make room.

We can make four observations. First, what looks like a capacity miss may be
just as reasonably viewed instead as a replacement policy error if a different
replacement policy would prevent that miss. (The fully associative misses in
the example from the solution to part (a) would vanish if the cache could hold
three blocks instead of just two.) Second, conflict misses are very similar to
capacity misses. If the capacity miss definition is changed to focus on the
cache set, “If the cache set cannot all the blocks mapping to that set during
execution of a program, set capacity misses will oceur”™ then conflict misses
are capacity misses for the narrower portion of the cache. Third, the storage
organization of set associative or direct mapped caches limits the scope of
blocks considered by the replacement policy. Finally, limiting the scope of a
replacement policy to a set can change its effectiveness for the better (see part
(a))., so the non-compulsory misses experienced by set associative and direct
mapped caches are not necessarily a superset of the non-compulsory misses
of a fully associative cache as assumed by the three C's model. Thus, the
three C’s model does not provide a clean distinction between capacity and
conflict misses. This means non-compulsory misses in the three C's model
cannot in general be definitively classified.

So, replacement policy seems to fit into the capacity and conflict miss realm
of the three C’s model. However, replacement policy effects blur the distine-
tion between these two miss categories. Only if there is one optimal replace-
ment policy can replacement error misses be readily separated from capacity
misses.

¢. For the example in the answer to part (a), if the fully associative cache simply
never replaced after loading the first two references of the loop, it would hit
on two out of every three loop references and beat the performance of the
direct mapped cache.

Program basic blocks are often short (less than 10 instructions). Even pro-
gram run blocks, sequences of instructions executed between branches, are
not very long. Prefetching obtains the next sequential block, but program exe-
cution does not continue to follow locations PC, PC+ 4, PC + 8, . . ., for very
long. So as blocks get larger the probability that a program will not execute
all instructions in the block, but rather take a branch to another instruction
address, increases. Prefetching instructions benefit performance when the
program continues straight-line execution into the next block. So as mstruc-
tion cache blocks increase in size, prefetching becomes less attractive.,

Data structures often comprise lengthy sequences of memory addresses. Pro-
gram access of a data structure often takes the form of a sequential sweep.
Large data blocks work well with such access patterns, and prefetching is
likely still of value due to the highly sequential access patterns.

